
ZU064-05-FPR arrowopt 3 May 2011 10:35

Under consideration for publication in J. Functional Programming 1

Causal Commutative Arrows

Hai Liu∗, Eric Cheng† and Paul Hudak
Department of Computer Science

Yale University
New Haven, CT 06520, U.S.A.

(e-mail: hai.liu@aya.yale.edu,eric.cheng@aya.yale.edu,paul.hudak@yale.edu)

Abstract

Arrows are a popular form of abstract computation. Being more general than monads, they are
more broadly applicable, and in particular are a good abstraction for signal processing and dataflow
computations. Most notably, arrows form the basis for a domain specific language called Yampa,
which has been used in a variety of concrete applications, including animation, robotics, sound
synthesis, control systems, and graphical user interfaces.

Our primary interest is in better understanding the class of abstract computations captured by
Yampa. Unfortunately, arrows are not concrete enough to do this with precision. To remedy this
situation we introduce the concept of commutative arrows that capture a non-interference property
of concurrent computations. We also add an init operator that captures the causal nature of arrow
effects, and identify its associated law.

To study this class of computations in more detail, we define an extension to arrows called causal
commutative arrows (CCA), and study its properties. Our key contribution is the identification of a
normal form for CCA called causal commutative normal form (CCNF). By defining a normalization
procedure we have developed an optimization strategy that yields dramatic improvements in perfor-
mance over conventional implementations of arrows. We have implemented this technique in Haskell,
and conducted benchmarks that validate the effectiveness of our approach. When compiled with the
Glasgow Haskell Compiler (GHC), the overall methodology can result in significant speed-ups.

1 Introduction

Consider the following recursive mathematical definition of the exponential function:

e(t) = 1+
∫ t

0
e(t)dt

In Yampa (Hudak et al., 2003), a domain-specific language embedded in Haskell (Peyton
Jones et al. , 2003), we can write this using arrow syntax (Paterson, 2001) as follows:

exp = proc ()→ do
rec let e = 1+ i

i← integral−≺ e
returnA−≺ e

∗ Presently at Intel Labs, Intel Corporation.
† Presently at Google Inc.

ZU064-05-FPR arrowopt 3 May 2011 10:35

2 Hai Liu, Eric Cheng and Paul Hudak

Even for those not familiar with arrow syntax or Haskell, the close correspondence between
the mathematics and the Yampa program should be clear. As in most high-level language
designs, this is the primary motivation for developing a language such as Yampa: reducing
the gap between program and specification.

Yampa has been used in a variety of applications, including robotics (Hudak et al., 2003;
Peterson et al., 1999a; Peterson et al., 1999b), sound synthesis (Giorgidze & Nilsson,
2008; Cheng & Hudak, 2009), animation (Hudak et al., 2003), video games (Courtney
et al., 2003; Cheong, 2005), bio-chemical processes (Hudak et al., 2008), control systems
(Oertel, 2006), and graphical user interfaces (Courtney & Elliott, 2001; Courtney, 2004).
There are several reasons that we prefer a language design based on arrows over, for
example, an approach such as that used in Fran (Elliott & Hudak, 1997). First, arrows
are more direct – they convey information about input as well as output, whereas Fran’s
inputs are implicit and global. Second, the use of arrows eliminates a subtle but devastating
form of space leak, as described in (Liu & Hudak, 2007). Third, arrows introduce a meta-
level of computation that aids in reasoning about program correctness, transformation, and
optimization.

But in fact, conventional arrows are not strong enough to capture the family of computa-
tions that we are interested in – more laws are needed to constrain the computation space.
Unfortunately, more constrained forms of computation – such as monads (Moggi, 1991)
and applicative functors (McBride & Paterson, 2008) – are not general enough. In addition,
there are not enough operators. In particular, we find the need for an abstract initialization
operator and its associated laws.

In this paper we give a precise abstract characterization of a class of arrow computa-
tions that we call causal commutative arrows, or just CCA for short. More precisely, the
contributions in this paper can be summarized as follows:

1. We define a notion of commutative arrow by extending the conventional set of arrow
laws to include a commutativity law.

2. We define an ArrowInit type class with an init operator that captures the essence of
causal computation and satisfies a product law.

3. We define a restricted language called CCA, in which the above ideas are manifest.
For such arrows we establish:

(a) a normal form, and
(b) a normalization procedure.

We achieve this result using only CCA laws, without referring to any concrete se-
mantics or implementation.

4. We define an optimization technique for causal commutative arrows that yields sub-
stantial improvements in performance over previous attempts to optimize arrow com-
binators and arrow syntax.

5. Finally, we show how to implement our ideas in GHC to yield speed-ups, in certain
cases by over two orders of magnitude.

We begin the presentation with a brief overview of arrows in Section 2. The knowledge-
able reader may prefer to skip directly to Section 3, where we give the definition and laws
for CCA. In Section 4 we show that any CCA program can be transformed into a uniform
representation that we call Causal Commutative Normal Form (CCNF). We prove that the

ZU064-05-FPR arrowopt 3 May 2011 10:35

Journal of Functional Programming 3

normalization procedure is sound, based on equational reasoning using only the CCA laws.
In Section 5 we discuss further optimizations, and in Section 6 their implementations in
GHC. We present some benchmarks showing the effectiveness of our approach in Section
7. We discuss in Section 8 possible extensions, and in Section 9 related work.

2 An Introduction to Arrows

Arrows (Hughes, 2000) are a generalization of monads that relax the stringent linearity
imposed by monads, while retaining a disciplined style of composition. Arrows have en-
joyed a wide range of applications, often as a domain-specific embedded language (DSEL
(Hudak, 1996; Hudak, 1998)), including the many Yampa applications cited earlier, as well
as parsers and printers (Jansson & Jeuring, 1999), parallel computing (Huang et al., 2007),
and so on. Arrows also have a theoretical foundation in category theory, where they are
strongly related to (but not precisely the same as) Freyd categories (Atkey, 2008; Power &
Thielecke, 1999).

2.1 Conventional Arrows

Like monads, arrows capture a certain class of abstract computations, and offer a way to
structure programs. In Haskell this is achieved through the Arrow type class:

class Arrow a where
arr :: (b→ c)→ a b c
(≫) :: a b c→ a c d→ a b d
first :: a b c→ a (b,d) (c,d)

The combinator arr lifts a function from b to c to a “pure” arrow computation from b to c,
namely a b c where a is the arrow type. The output of a pure arrow entirely depends on the
input (it is analogous to return in the Monad class). ≫ composes two arrow computations
by connecting the output of the first to the input of the second (and is analogous to bind
>>= in the Monad class). But in addition to composing arrows linearly, it is desirable to
compose them in parallel – i.e. to allow “branching” and “merging” of inputs and outputs.
There are several ways to do this, but by simply defining the first combinator in the Arrow
class, all other combinators can be defined. first converts an arrow computation taking one
input and one result, into an arrow computation taking two inputs and two results. The
original arrow is applied to the first part of the input, and the result becomes the first part
of the output. The second part of the input is fed directly to the second part of the output.

Other combinators can be defined using these three primitives. For example, the dual of
first can be defined as:

second :: (Arrow a)⇒ a b c→ a (d,b) (d,c)
second f = arr swap ≫ first f ≫ arr swap

where swap (a,b) = (b,a)

Parallel composition can be defined as a sequence of first and second:

(???) :: (Arrow a)⇒ a b c→ a b′ c′→ a (b,b′) (c,c′)
f ???g = first f ≫ second g

ZU064-05-FPR arrowopt 3 May 2011 10:35

4 Hai Liu, Eric Cheng and Paul Hudak

left identity arr id ≫ f = f
right identity f ≫ arr id = f
associativity (f ≫ g) ≫ h = f ≫ (g ≫ h)
composition arr (g . f) = arr f ≫ arr g
extension first (arr f) = arr (f × id)
functor first (f ≫ g) = first f ≫ first g
exchange first f ≫ arr (id×g) = arr (id×g) ≫ first f
unit first f ≫ arr fst = arr fst ≫ f
association first (first f) ≫ arr assoc = arr assoc ≫ first f

where assoc ((a,b),c) = (a,(b,c))

Fig. 1. Conventional arrow laws

left tightening loop (first h ≫ f) = h ≫ loop f
right tightening loop (f ≫ first h) = loop f ≫ h
sliding loop (f ≫ arr (id× k)) = loop (arr (id× k) ≫ f)
vanishing loop (loop f) = loop (arr assoc−1 ≫ f ≫ arr assoc)
superposing second (loop f) = loop (arr assoc ≫ second f ≫ arr assoc−1)
extension loop (arr f) = arr (trace f)

where trace f b = let (c,d) = f (b,d) in c

Fig. 2. Arrow loop laws

A mere implementation of the arrow combinators, of course, does not make it an arrow
– it must additionally satisfy a set of arrow laws, which are shown in Figure 1.

2.2 Looping Arrows

To model recursion, we can introduce a loop combinator (Paterson, 2001). The exponential
example given in the introduction requires recursion, as do many applications in signal
processing, for example. In Haskell this combinator is captured in the ArrowLoop class:

class Arrow a⇒ ArrowLoop a where
loop :: a (b,d) (c,d)→ a b c

A valid instance of this class should satisfy the additional laws shown in Figure 2. This
class and its associated laws are related to the trace operator in (Street et al., 1996; Hasegawa,
1997), which was generalized to arrows in (Paterson, 2001).

We find that arrows are best viewed pictorially, especially for applications such as signal
processing, where domain experts commonly draw signal flow diagrams. Figure 3 shows
some of the basic combinators in this manner, including loop.

2.3 Arrow Syntax

Recall the Yampa definition of the exponential function given earlier:

exp = proc ()→ do
rec let e = 1+ i

i← integral−≺ e
returnA−≺ e

ZU064-05-FPR arrowopt 3 May 2011 10:35

Journal of Functional Programming 5

arr :: Arrow a⇒ (b→ c)→ a b c
(≫) :: Arrow a⇒ a b c→ a c d→ a b d
first :: Arrow a⇒ a b c→ a (b,d) (c,d)
(???) :: Arrow a⇒ a b c→ a b′ c′→ a (b,b′) (c,c′)
loop :: Arrow a⇒ a (b,d) (c,d)→ a b c

(a) arr f (b) f ≫ g (c) first f

(d) f ???g (e) loop f

Fig. 3. Commonly Used Arrow Combinators

commutativity first f ≫ second g = second g ≫ first f
product init i??? init j = init (i, j)

Fig. 4. Causal Commutative Arrow Laws

This program is written using arrow syntax, introduced by (Paterson, 2001) and adopted
by GHC (the predominant Haskell implementation) because it ameliorates the cumber-
some nature of writing in the point-free style demanded by arrow combinators. The above
program is equivalent to the following sugar-free program:

exp = fixA (integral ≫ arr (+1))
where fixA f = loop (second f ≫ arr (dup . snd))

dup x = (x,x)

Although more cumbersome, we will use this program style in the remainder of the paper,
in order to avoid having to explain the meaning of arrow syntax in more detail.

3 Causal Commutative Arrows

In this section we introduce two key extensions to conventional arrows, and demonstrate
their use by implementing a stream transformer in Haskell.

First, as mentioned in the introduction, the set of arrow and arrow loop laws is not
strong enough to capture stream computations. In particular, the commutativity law shown
in Figure 4 establishes a non-interference property for concurrent computations – effects
are still allowed, but this law guarantees that concurrent effects cannot interfere with each
other. We say that an arrow is commutative if it satisfies the conventional laws as well as
this critical additional law. Yampa is in fact based on commutative arrows.

Second, we note that Yampa has a primitive operator called iPre that is used to inject
a delay into a computation; indeed it is the primary effect imposed by the Yampa arrow
(Hudak et al., 2003). Similar operators, often called delay, also appear in dataflow pro-

ZU064-05-FPR arrowopt 3 May 2011 10:35

6 Hai Liu, Eric Cheng and Paul Hudak

newtype SF a b = SF {unSF :: a→ (b,SF a b)}
instance Arrow SF where

arr f = SF h where h x = (f x,SF h)
first f = SF (h f) where h f (x,z) = let (y, f ′) = unSF f x

in ((y,z),SF (h f ′))
f ≫ g = SF (h f g) where h f g x = let (y, f ′) = unSF f x

(z,g′) = unSF g y
in (z,SF (h f ′ g′))

instance ArrowLoop SF where
loop f = SF (h f) where h f x = let ((y,z), f ′) = unSF f (x,z)

in (y,SF (h f ′))
instance ArrowInit SF where

init i = SF (h i) where h i x = (i,SF (h x))

runs f :: SF a b→ [a]→ [b]
runs f f = g f where g f (x : xs) = let (y, f ′) = unSF f x

in y : g f ′ xs

Fig. 5. Causal Stream Transformer

gramming (Wadge & Ashcroft, 1985), stream processing (Stephens, 1997; Thies et al.,
2002), and synchronous languages (Caspi et al., 1987; Colaço et al., 2004). In all cases,
the operator introduces stateful computation into an otherwise stateless setting.

In an effort to make this operation more abstract, we rename it init and capture it in the
following type class:

class ArrowLoop a⇒ ArrowInit a where
init :: b→ a b b

Intuitively, the argument to init is the initial output; subsequent output is a copy of the input
to the arrow. It captures the essence of causal computations, namely that the current output
depends only on the current as well as previous inputs. Besides causality, we make no other
assumptions about the nature of these values: they may or may not vary with time, and the
increment of change may be finite or infinitesimally small.

More importantly, a valid instance of the ArrowInit class must satisfy the product law
shown in Figure 4. This law states that two inits paired together are equivalent to one init of
a pair. Here we use the ??? operator instead of its expanded definition first... ≫ second...

to imply that the product law assumes commutativity.
We will see in a later section that init and the product law are critical to our normalization

and optimization strategies. But init is also important in allowing us to define operators that
were previously taken as domain-specific primitives. In particular, consider the integral
operator used in the exponentiation examples. With init, we can define integral using the
Euler integration method and a fixed global step dt as follows:

integral :: ArrowInit a⇒ a Double Double
integral = loop (arr acc ≫ init 0 ≫ arr dup) where acc (x, i) = i+dt ∗ x
dup x = (x,x)

To complete the picture, we give an instance (i.e. an implementation) of CCA that
captures a causal stream transformer, as shown in Figure 5, where:

ZU064-05-FPR arrowopt 3 May 2011 10:35

Journal of Functional Programming 7

• SF a b is an arrow representing functions (transformers) from streams of type a
to streams of type b. It is essentially a recursively defined data type consisting of
a function with its continuation, a concept closely related to a form of finite state
automaton called a Mealy Machine (G. H. Mealy, 1955). Yampa employs a similar
implementation, and the same data type was called Auto in (Paterson, 2001).
• SF is declared an instance of type classes Arrow, ArrowLoop and ArrowInit. For

example, exp can be instantiated as type exp :: SF () Double. These instances obey
all of the arrow laws, including the two additional laws that we introduced.

• runs f ::SF a b→ [a]→ [b] converts an SF arrow into a stream transformer that maps
an input stream of type [a] to an output stream of type [b].

As a demonstration, we can sample the exponential function at a fixed time interval by
running the exp arrow over an uniform input stream inp:

dt = 0.01 :: Double
inp = () : inp :: [()]

∗Main> runs f exp inp
[1.0,1.01,1.0201,1.030301,1.04060401,1.0510100501, ...

We must stress that the SF type is but one instance of a causal commutative arrow, and
alternative implementations such as the synchronous circuit type SeqMap in (Paterson,
2001) and the stream function type (incidentally also called) SF in (Hughes, 2004) also
qualify as valid instances. The abstract properties such as normal forms that we develop
in the next section are applicable to any of these instances, and thus are more broadly
applicable than optimization techniques based on a specific semantic model, such as the
one considered in (Caspi & Pouzet, 1998).

4 Normalization of CCA

In most implementations, arrow programs carry a run-time overhead, primarily due to
the use of a data structure for arrow instances, as well as the extra tupling forced onto
function’s arguments and return values. There have been several attempts (Hughes, 2004;
Nilsson, 2005) to optimize arrow-based programs using arrow laws, but the result has not
been entirely satisfactory. Although conventional arrow and arrow loop laws offer ways to
combine pure arrows and collapse nested loops, they are not specific enough to target
effectful arrows, such as the init combinator. Certain effectful arrows are dynamically
optimized in (Nilsson, 2005), but they are based on somewhat ad-hoc laws, and there are
no normal forms.

Our new strategy is based on the following rather striking observation: any CCA program
can be transformed into a single loop containing one pure arrow and one initial state value.
More precisely, any CCA program can be normalized into either the form arr f or:

loop (arr f ≫ second (init i))

where f is a pure function and i is an initial state. Note that all the essential arrow com-
binators, arr, ≫, second, loop and init, are used exactly once, and therefore all of the
overheads (tupling, etc.) associated with multiple occurrences and compositions of the

ZU064-05-FPR arrowopt 3 May 2011 10:35

8 Hai Liu, Eric Cheng and Paul Hudak

Fig. 6. Diagram for loopD

(a) Original (b) Optimized

Fig. 7. Diagrams for exp

arrow combinators are completely eliminated. Not surprisingly, the resulting improvement
in performance is rather dramatic, as we will see later.

First we define a combinator called loopD that can be viewed as syntactic sugar for the
above form:

loopD :: ArrowInit a⇒ d→ ((b,d)→ (c,d))→ a b c
loopD i f = loop (f ≫ second (init i))

A pictorial view of loopD is given in Figure 6. The second argument to loopD is a pure
function mapping a tuple of (b,d) to (c,d), where the value of type d is initialized before
looping back, and is often regarded as an internal state.

As a concrete example, Figure 7(a) is a diagram of the original exp example given earlier.
In Figure 7(b) we have inlined the definition of integral and applied the optimization
strategy. The result is a single loop, where all pure functions can be combined together
to minimize arrow implementation overheads.

To be more precise as to what kind of arrows are subject to normalization, we want to
restrict our discussion in this section on well-formed and closed CCA terms.

Definition 4.1 (CCA)
A causal commutative arrow (CCA) is a valid instance of the ArrowInit class, whose terms
are definable from only the following combinators: arr, first, ≫, loop and init. All CCAs
must satisfy the two CCA laws given in Figure 4 in addition to the arrow and arrow loop
laws.

Definition 4.1 effectively means:

1. We are only concerned with CCAs written in closed terms, without referencing arrow
definitions from the environment (syntactic sugar is still allowed).

2. Such arrows must not be recursively defined otherwise normalization would fail to
terminate.

3. There is no lambda abstraction or application at the arrow level so that we can avoid
talking about beta reduction or variable substitution of arrow terms. Note, however,
that we do allow all forms of functions, including recursive ones, to be lifted by arr.

Definition 4.1 may seem too restrictive as it precludes any form of modularity for CCA
since all terms are closed. We believe this is only a necessary step to avoid complications in
formalizing CCA properties, and can certainly be relaxed in real-world implementations.

ZU064-05-FPR arrowopt 3 May 2011 10:35

Journal of Functional Programming 9

composition arr f ≫ arr g 7→ arr (g . f)
left tightening arr f ≫ loopD i g 7→ loopD i (g . (f × id))
right tightening loopD i f ≫ arr g 7→ loopD i ((g× id) . f)
sequencing loopD i f ≫ loopD j g 7→ loopD (i, j) (assoc′ (juggle′ (g× id) . (f × id)))
extension first (arr f) 7→ arr (f × id)
superposing first (loopD i f) 7→ loopD i (juggle′ (f × id))
loop-extension loop (arr f) 7→ arr (trace f)
vanishing loop (loopD i f) 7→ loopD i (trace (juggle′ f))

f ×g (x,y) = (f x,g y) swap (x,y) = (y,x)
assoc ((x,y),z) = (x,(y,z)) trace f x = let (y,z) = f (x,z) in y
assoc−1 (x,(y,z)) = ((x,y),z) juggle ((x,y),z) = ((x,z),y)
assoc′ f = assoc . f . assoc−1 juggle′ f = juggle . f . juggle

Fig. 8. Single Step Reduction for CCA

(NORM1)
arr f ⇓ arr f

(NORM2)
loopD i f ⇓ loopD i f

(INIT)
init i ⇓ loopD i swap

(SEQ)
e1 ⇓ e′1 e2 ⇓ e′2 e′1 ≫ e′2 7→ e

e1 ≫ e2 ⇓ e

(FIRST)
f ⇓ f ′ first f ′ 7→ e

first f ⇓ e
(LOOP)

f ⇓ f ′ loop f ′ 7→ e

loop f ⇓ e

Fig. 9. Normalization of CCA

Our intuition behind the normalization process is to extend arrow loop laws to loopD, so
that we only get the loopD form as a result. Formally we define a single step reduction
7→ for CCA as a set of rules in Figure 8, and a normalization procedure in Figure 9.
The normalization relation ⇓ can be seen as a big step reduction following an innermost
strategy, and is indeed a function.

Note that some of the reduction rules resemble the arrow laws of the same name. How-
ever, there are some subtle but important differences: First, unlike the laws, reduction is
directed. Second, the rules are extended to handle loopD instead of loop.

To see how this works, it is helpful to visualize a few examples of the reduction rules in
Figure 8, as shown in Figure 10. We omit the simpler rules that follow directly from the
laws, and only show those that involve loopD. The diagrams in Figure 10 can be explained
as follows:

(a) left tightening. Figure 10(a) shows that we can move a pure arrow from a left
composition inside a loopD arrow. This follows directly from the left tightening law
of loop.

(b) right tightening. Figure 10(b) shows that we can move a pure arrow from a right
composition inside a loopD arrow so that it fuses with the pure function inside the
loopD. This follows directly from the left tightening law of loop and the commuta-
tivity law of CCA.

ZU064-05-FPR arrowopt 3 May 2011 10:35

10 Hai Liu, Eric Cheng and Paul Hudak

(a) left tightening (b) right tightening (c) sequencing

(d) superposing (e) vanishing

Fig. 10. Illustrations of Reduction Rules

(c) sequencing. Figure 10(c) shows that we can combine two loopD arrows into one.
In doing so, we have to re-route part of the computation, and make use of product
law to fuse two init arrows into one. Notice that there is also a re-ordering of a pure
arrow and an init arrow, which is due to the commutativity law of CCA.

(d) superposing. Figure 10(d) shows a variant of the superposing law for loopD using
first instead of second. Instead of an outer parallel composition, the second line
simply passes through the loopD unchanged with some re-routing.

(f) vanishing. Figure 10(e) shows an extension of the vanishing law for loops to handle
loopD. Since the outer loop only acts on the pure function, it can be moved inside
and composed with the trace function due to the loop extension law.

Lemma 4.1 (Soundness)
The reduction rules given in Figure 8 are both type and semantics preserving, i.e., if e 7→ e′

then e = e′ is syntactically derivable from the set of CCA laws.

Proof: By equational reasoning using arrow laws. The composition, extension and loop-
extension reduction rules are directly based on the arrow laws with the same name; left
and right tightening, superposing and vanishing reduction rules follow the definition of
loopD, the commutativity law and the arrow loop laws with the same name. The proof of
the sequencing rule is more involved, and is given in Appendix B. ¤

Lemma 4.2 (Termination)
The normalization procedure for CCA given in Figure 9 terminates for all CCAs.

Proof: By structural induction over all possible definitions of a CCA program. The rules
NORM1, NORM2, and INIT are the base case, and SEQ, FIRST, and LOOP cover the
inductive case, where the sub arrows (such as e1 and e2 in e1 ≫ e2, and f in first f and
loop f) are normalized inductively. It also explains why there are exactly 8 reduction rules

ZU064-05-FPR arrowopt 3 May 2011 10:35

Journal of Functional Programming 11

for 7→, because the premises of SEQ, FIRST and LOOP require 4, 2 and 2 reduction rules
respectively. ¤

Theorem 4.1 (CCNF)
For any CCA term e :: ArrowInit a⇒ a b c satisfying Definition 4.1, there exists a normal
form enorm, called the Causal Commutative Normal Form, which is either of the form
arr f , or loopD i f for some i and f , such that enorm :: ArrowInit a⇒ a b c, and e ⇓ enorm.
In unsugared form, the second form is equivalent to loop (arr f ≫ second (init i)).

Proof
Follows from Lemmas 4.1 and 4.2. It is easy to see that when the normalization algorithm
(Figure 9) terminates, the result is a CCNF.

Since we have presented a normal form and proved the soundness of its reduction rules,
a natural question to ask is whether the result leads to completeness. Unfortunately this is
not the case. For example, the following two arrows f and g are already in CCNF, and they
are both equivalent to init 0 ≫ init 1 with respect to the CCA laws:

f = loopD (0,1) (λ (x,(y,z))→ (z,(y,x)))
g = loopD (1,0) (λ (x,(y,z))→ (y,(z,x)))

With some tricks of tuple re-shuffling, we can easily convert f to g or vice versa in a sound
way respecting the CCA laws, but still, they are both normal forms, and yet different.

Moreover, due to the introduction of general recursion at value level through the loop
combinator, it’s hard to reason about equivalence relationship when there is non-termination.
For example, the following two arrows should both reduce to non-terminating traces that
are bottom, but this equivalence is not derivable from the laws.

p = loop (arr (λ (,x)→ (x,x+1)))
q = loop (arr (λ (,x)→ (x,x+2)))

After all, the lack of completeness does not necessarily undermine the importance or the
usefulness of our technique, as will be shown in the next section.

5 Optimization

In this section we describe a simple sequence of optimizations that ultimately leads to a
single imperative loop that can be implemented extremely efficiently.

SF Arrow One observation is that instead of defining loopD as syntactic sugar, we can
implement it directly for a given arrow instance. For instance, using the SF data type shown
in Figure 5, loopD can be defined as:

loopD i f = SF (g i) where g i x = let (y, i′) = f (x, i) in (y,SF (g i′))

As a more concrete example, a special case of runs f (defined in Section 3) often used in
practice is computing the nth element of the output stream when the input is a constant unit
stream. This gives the following function that avoids constructing the output stream using
the list data structure:

ZU064-05-FPR arrowopt 3 May 2011 10:35

12 Hai Liu, Eric Cheng and Paul Hudak

nths f :: Int→ SF () b→ b
nths f n (SF f) = x ‘seq‘ if n≡ 0 then x else nths f (n−1) f ′ where (x, f ′) = f ()

Notice the use of seq in order to force strict evaluation in each iteration because we want
the computation of each iteration to finish before next iteration, instead of being postponed
until the very end due to laziness.

CCNF Tuple Given the fact that a CCNF is no more than a tuple of a state and a pure
function, we can drop the SF data structure altogether by simply using the tuple instead
of an arrow written in loopD form. Correspondingly we can define the stream transformer
runccn f and the nth element evaluator nthccn f for CCNF tuples:

runccn f :: (d,((b,d)→ (c,d)))→ [b]→ [c]
runccn f (i, f) = g i where g i (x : xs) = let (y, i′) = f (x, i) in y : g i′ xs

nthccn f :: Int→ (d,((),d)→ (c,d))→ c
nthccn f n (i, f) = aux n i where aux n i = x ‘seq‘ if n≡ 0 then x else aux (n−1) i′

where (x, i′) = f ((), i)

Instead of taking an arrow, the above two functions just take a CCNF tuple and use the
pure function to update the state in a loop computation. In doing so, we have successfully
transformed away all arrow instances, including the data structure used to implement them!

Inlining As we have mentioned in Section 4, the normalization of CCA only acts on fully
inlined arrow terms. For example, in order to normalize the exp arrow, we need to inline
integral. After the inlining, we then normalize it to the CCNF below:

exp = loopD expi exp f

expi = 0
exp f = trace (juggle . ((dup . snd)× id) . (swap× id) . juggle . ((((+1)× id) .

trace (juggle . (dup× id) . swap . ((λ (x, i)→ i+dt ∗ x)× id) . juggle))× id) .

juggle . (swap× id) . juggle)

The CCNF tuple for the exp arrow is just (expi,exp f). Notice the sequence of function
compositions in exp f is the result of our CCA normalization procedure.

To take the inlining one step further, we can simplify the pure function from a CCNF tu-
ple, such as exp f given above. The default optimization and inlining techniques supported
by GHC can already do this without any user intervention. We demonstrate this step with
the above CCNF for exp, though the technique is equally applicable to any CCNF.

For example, to compute the nth element of the exponential sequence, we can just apply
runccn f to the CCNF tuple (expi,exp f) like this:

nthexp :: Int→ Double
nthexp n = nthccn f n (expi,exp f)

When given proper optimization flags, GHC is able to agressively optimize the above code
and fully inline all functions in the definition of exp f and nthexp. The following is the
equivalent intermediate representation extracted from GHC after optimization:

nthexp n = case n of {I# m→ go 0.0 m}

ZU064-05-FPR arrowopt 3 May 2011 10:35

Journal of Functional Programming 13

go :: Double#→ Int#→ Double
go i n = case n of

DEFAULT→ go (i+(dt ∗ (i+1.0))) (n−1)
0 → D# (i+1.0)

As we can see, GHC has successfully inlined not only the function nthccn f but also expi

and exp f , and transformed everything into a tight loop using only strict and unboxed types
(those marked by #). This kind of aggressive optimization essentially results in compiling a
CCA program directly to a tight loop that is free of any memory allocation of intermediate
data structures.

6 Implementation

6.1 Template Haskell Based Implementation

We implement CCA normalizations in Haskell with help from Template Haskell (Sheard
& Peyton Jones, 2002), an extension to Haskell that allows type-safe compile-time meta-
programming. Our compilation process consists of three steps:

1. The source arrow program is translated to an abstract syntax tree (AST).
2. The AST is then normalized to CCNF.
3. The result is spliced back into the original program before the Haskell compiler

finishes the rest of compilation.

The first step requires inlining of all arrow terms in preparation for the second step that
does the actual normalization. So merely grabbing the AST of a single CCA definition
is not enough since it may contain references to other definitions. Our solution here is
to allow a generic ArrowInit instance to be instantiated as an AST directly from within
Haskell, so that when we evaluate such a term, we get a full AST. This is performed by
the Haskell compiler at the meta level and can help achieving similar effects of inlining or
substitutions. The following code snippet demonstrates this approach:

data AExp = Arr ExpQ
| First AExp
| AExp :≫ AExp
| Loop AExp
| Init ExpQ
| LoopD ExpQ ExpQ

newtype ASyn b c = AExp AExp

The AExp data type represents an AST for CCA, and ASyn b c employs phantom types
so that we can declare ASyn to be an instance of the Arrow, ArrowLoop and ArrowInit
type classes. The ExpQ type used here is the internal syntactic representation of a Haskell
expression provided by Template Haskell.

For example, the Arrow instance of Asyn can be declared as follows:

instance Arrow ASyn where
arr f = error "use arr’ instead"

ZU064-05-FPR arrowopt 3 May 2011 10:35

14 Hai Liu, Eric Cheng and Paul Hudak

AExp f ≫ AExp g = AExp (f :≫ g)
first (AExp f) = AExp (First f)

As we can see here, the usual arrow combinators are just syntactic operations over the
AExp data type. The problem, however, is in defining the arr combinator. For instance,
consider the following program:

f :: Arrow a⇒ a b c
g :: Arrow a⇒ a b′ c′

h :: Arrow a⇒ a (b,b′) (c,c′)
h = first f ≫ arr swap ≫ first g ≫ arr swap

We can obtain the AST for h by instantiating the generic arrow type a to Asyn. This step
is automatic because any function over type ASyn u v can be applied to any generic arrow
of type Arrow a⇒ a u v. Simply evaluating h :: ASyn (b,b′) (c,c′) in a Haskell interpreter
such as GHCi shall return its AST as something like below:

AExp (((First f ′ :≫ Arr swap) :≫ First g′) :≫ Arr swap)

where f ′ and g′ stand for the AST for f and g respectively. The instantiation of f and g is
automatic because the concrete arrow types for f and g are inferred to be ASyn too. Another
way to look at this is that AExp f ′ :: ASyn b c and AExp g′ :: ASyn b′ c′ are instances of the
generic arrow f and g.

The real issue here, however, is that we cannot automatically reify a Haskell function
such as swap to the meta level, so the above AST for h has a type error, because Arr swap
will not type check.

Template Haskell can reify certain expressions to the meta level, and this step is called
quotation. But it cannot do so for all values, and requires explicit quotation using a special
syntax [|...|] for certain things, such as references to global definitions.

To work around this problem, we ask the programmer to always state the quotation
explicitly, and disallow direct usage of arr as indicated in the arrow instance delcaration
for ASyn. Instead of arr, we provide an arr′ function that additionally takes a quoted
expression, for example:

arr′ [| λx→ (x,x) |] (λx→ (x,x))

The above would give us the needed AST for the pure function λx→ (x,x) in addition
to the function itself, where the [|...|] operation is a special Template Haskell syntax for
quoting (“quotable”) Haskell expression into an ExpQ representation. We provide arr′ (as
well as init′, since init faces a similar problem) in the ArrowInit class defined below:

class (Arrow a,ArrowLoop a)⇒ ArrowInit a where
init :: b→ a b b
arr′ :: ExpQ→ (b→ c)→ a b c
init′ :: ExpQ→ b→ a b b
loopD :: e→ ((b,e)→ (c,e))→ a b c

Since asking the programmer to write in arr′ gets tedious over time, we provide a modified
arrow syntax translator that directly outputs combinator programs written in arr′ and init′

instead of arr and init.

ZU064-05-FPR arrowopt 3 May 2011 10:35

Journal of Functional Programming 15

The actual normalization of an AExp can be straightforwardly implemented as a traversal
using the algorithms given in Figures 8 and 9. We omit the details here by just saying the
CCNF of an AExp is eventually represented by either the Arr or the LoopD constructors.

We provide the normalization function as a Template Haskell splice operation:

norm :: ArrowInit a⇒ a b c→ ExpQ

So if we evaluate $(norm e) for any generic arrow e :: ArrowInit a⇒ a b c, what happens
in the background is that it will first instantiate e to an ASyn arrow which is internally
represented by the AExp data type, then normalized to a LoopD (or Arr) form, and finally
spliced back as an Haskell expression loopD i f (or arr f) for some i and f . The $(...)
operation is a special Template Haskell syntax for splicing. Since GHC has native support
for Template Haskell, the entire process happens without any user intervention during
either the compilation of a Haskell source program using GHC, or an intepretive session
using the interactive Haskell evaluator GHCi.

6.2 Technical Limiations

The use of Template Haskell allows a very simple implementation of the meta operations
required for CCA normalization, and its integration with GHC gives a seamless user ex-
perience. The most significant advantage, however, is that all normalizations are done at
compile-time, so that GHC may further optimize the result through strictness analysis,
unboxing, inlining, and various other techniques.

An immediate restriction of this approach is that a full AST has to be made available at
compile-time, which is only applicable to a subset of all ArrowInit instances. Alternative
implementations may lift this restriction by allowing normalization at runtime or even
utilizing a JIT compiler, and we leave this to the future work.

Besides the compile-time restriction, one caveat to this approach has to do with a limi-
tation of Template Haskell. For example, suppose we define a constant arrow like this:

constant :: ArrowInit a⇒ c→ a b c
constant x = proc → returnA−≺ x

When we try to instantiate the above arrow type a to ASyn, the compiler will complain that
the type for constant is wrong, and insist that type c must be a member of the Lift class,
which is how Template Haskell reifies a Haskell value to the meta level. To see exactly
where is the problem, we translate the above from arrow syntax to combinators using arr′:

constant x = arr′ [| λ → x |] (λ → x)

The quotation of the lambda expression \ → x above has a reference to x, a parameter of
the function constant, and Template Haskell cannot quote it unless it knows how to reify
the value of x to the meta level. and hence requires that the type for x is an instance of the
Lift class.

On the other hand, our goal in the first step of inlining CCA definitions is not to lift
arbitrary Haskell values, but to generate top-level code that could somehow still relate the
occurrence of variable x in a quotation to the actual parameter of constant symbolically,
so that we know how to handle substitution without evaluating the actual value of x. In

ZU064-05-FPR arrowopt 3 May 2011 10:35

16 Hai Liu, Eric Cheng and Paul Hudak

Table 1. Performance Ratio (greater is better)

Name GHC arrowp CCNFsf CCNFtuple

exp 1.0 3.58 30.84 672.79
sine 1.0 2.81 18.89 442.48
oscSine 1.0 2.91 14.28 29.53
50’s sci-fi 1.0 3.15 18.72 21.37
robotSim 1.0 2.84 24.67 34.93

order to do so in Template Haskell would require quoting the entire definition of constant
and restricting variable x to be of the ExpQ type, the type for quoted expressions. This will
prevent us from re-using the same unmodified code without CCA normalization, and hence
compromise one of our initial goals of making the implementation non-intrusive.

A more effective solution is to perform inlinings and substitutions at the meta level, e.g.,
using a heavily customized arrow syntax preprocessor, which will no longer rely on the
evaluation of Haskell terms, and hence bypass the whole reification issue. Unfortunately
this is beyond what Template Haskell does, and we leave it to future work.

7 Benchmarks

We ran a set of benchmarks to measure the performance of several programs written in
arrow syntax, but compiled and optimized in different ways. For each program, we:

1. Compiled with GHC, which has a built-in translator for arrow syntax, and ran nths f

on the resulting arrow. (GHC)
2. Translated using Paterson’s arrowp pre-processor to arrow combinators, compiled

with GHC, and ran nths f on the resulting arrow. (arrowp)
3. Normalized to CCNF, compiled with GHC and ran nths f on the normalized arrow.

(CCNFsf)
4. Normalized to CCNF, compiled with GHC and ran nthccn f on the CCNF tuple.

(CCNFtuple)

The five benchmarks we used are: the exponential function given earlier, a sine wave
with fixed frequency using Goertzel’s method (Goertzel, 1958), a sine wave with variable
frequency, “50’s sci-fi” sound synthesis program taken from (Giorgidze & Nilsson, 2008),
and a robot simulator taken from (Hudak et al., 2003). The programs were compiled and
run on an Intel Atom N270 1.6GHz machine with GHC version 6.10.4, using compila-
tion options -O2 -fvia-C -fno-method-sharing -fexcess-precision. We mea-
sured the CPU time used to run a program through 106 samples. The results are shown
in Table 1, where the numbers represent normalized speedup ratios, and we include the
source program for all benchmarks in Appendix A.

The results show dramatic performance improvements using normalized arrows. We
note that:

1. Based on the same arrow implementation, the performance gain of CCNF over
the first two approaches is entirely due to program transformations at the source

ZU064-05-FPR arrowopt 3 May 2011 10:35

Journal of Functional Programming 17

class Arrow a⇒ ArrowChoice a where
left :: a b c→ a (Either b d) (Either c d)

extension left (arr f) = arr (f ⊕ id)
functor left (f ≫ g) = left f ≫ left g
exchange left f ≫ arr (id⊕g) = arr (id⊕g) ≫ left f
unit arr left ≫ left f = f ≫ arr left
association left (left f) ≫ arr assocsum = arr assocsum ≫ left f

f ⊕g (Left x) = Left (f x) assocsum (Left (Left x)) = Left x
f ⊕g (Right y) = Right (g y) assocsum (Left (Right x)) = Right (Left x)

assocsum (Right x) = Right (Right x)

Fig. 11. ArrowChoice class and its laws

level. This means that the runtime overhead of arrows is significant, and cannot be
neglected for real applications.

2. With help from GHC’s optimization technique, the CCNF tuple produces high-performance
code that is completely free of dynamic memory allocation and intermediate data
structures, and can be orders of magnitude faster than its arrow-based predecessors.

3. GHC’s arrow syntax translator does not do as well as Paterson’s original translator
for the sample programs we chose, though both are significantly outperformed by
our normalization techniques.

8 Expressiveness and Extensions

The CCA language remains highly abstract due to the use of the arrow laws. Even though in
FRP or dataflow programming, we tend to think very operationally of init as a unit delay,
there is no reason to confine CCA only to this application domain. For instance, CCA
also forms the basis of a DSL for Ordinary Differential Equations (ODEs), and arrows
are indeed a better choice in implementation DSL level let-expressions in comparison to
tagged AST, or Higher-Order Abstract Syntax (HOAS), because they help maintain the
sharing of computation and avoid space leaks (Liu & Hudak, 2010).

Many dataflow and stream programming languages provide conditionals, such as if-
then-else, as part of the language (Wadge & Ashcroft, 1985; Caspi et al., 1987). Condi-
tionals at the arrow level are captured by the ArrowChoice class together with a set of the
ArrowChoice laws shown in Figure 11. We can easily extend the reduction rules in Figure 8
to handle ArrowChoice as follows:

extension left (arr f) 7→ arr (f ⊕ id)
superposition left (loopD i f) 7→ loopD i (tag−1 . (f ⊕ id) . tag)

tag (Left x,y) = Left (x,y) tag−1 (Left (x,y)) = (Left x,y)
tag (Right x,y) = Right (x,y) tag−1 (Right (x,y)) = (Right x,y)

The soundness of the above extension to the reduction rules can be easily proved with
respect to the arrow choice laws shown in Figure 11, and we omit the details here.

ZU064-05-FPR arrowopt 3 May 2011 10:35

18 Hai Liu, Eric Cheng and Paul Hudak

We also need a new inference rule for the normalization procedure shown in Figure 9,
which is given below:

(LEFT)
f ⇓ f ′ left f ′ 7→ p

left f ⇓ p

Similarly, termination can be proved for the above extension. It can also be easily shown
that the above extensions requires no modification to CCNF, and Theorem 4.1 still holds. In
other words, CCA extended with ArrowChoice can still be normalized to the same normal
form as in the original CCA.

On the other hand, there are also things not representable in CCA. For example, the
switch combinator introduced in Yampa is able to dynamically replace a running arrow
with a new one depending on an input event, and hence to switch the system behavior
completely. With CCA, there is no way to change the compositional structure of the arrow
program itself at run time.

It should also be noted that the local state introduced by init is one of the minimal side
effects one can introduce to arrow programs. The commutativity law for CCA ensures that
the effect of one arrow cannot interfere with another when composed together, and it is no
longer satisfiable when such ordering becomes important, e.g., when arrows are used to
model parsers and printers (Jansson & Jeuring, 1999).

9 Related Work

9.1 Alternative Formalisms

Apart from arrows, other formalisms such as monads, comonads and applicative functors
have been used to model computations over data streams (Bjesse et al., 1998; Uustalu
& Vene, 2005; McBride & Paterson, 2008). Central to many of these approaches are the
representation of streams and computations about them. However, notably missing are the
connections between stream computation and the related laws. For example, Uustalu and
Vene (2005) concluded that comonad is a suitable model for dataflow computation, but it
lacks the discussion on comonadic laws.

In contrast, it is the very idea of making sense out of arrow and arrow loop laws that
motivated our work. We argue that arrows are a suitable abstract model for stream com-
putation not only because we can implement stream functions as arrows, but also because
abstract properties like the arrow laws help to bring more insights to our target application
domain.

Besides having to satisfy respective laws for these formalisms, each abstraction has to
introduce domain specific operators, otherwise it would be too general to be useful. With
respect to causal streams, many have introduced init (also known as delay) as a primitive
to enable stateful computation, but few seem to have made the connection of its properties
to program optimizations.

Lindley et al. (2010) give a more explicit explanation of the arrow laws by constructing
an arrow calculus and turning the nine arrow laws into five laws for the calculus, and
discover a redundancy in the original nine arrow laws. Unfortunately, arrow loop is not
included in their formulation.

ZU064-05-FPR arrowopt 3 May 2011 10:35

Journal of Functional Programming 19

The loop combinator and its arrow loop laws play a key role in CCA normalization
because multiple loops can be fused together, and nested loops can be collapsed into just
one. This is actually very close to yet another instantiation of the Folk Theorem (Harel,
1980) that all computer programs can be simulated by a single while-loop, if not for the
fact that arrows and arrow loop only model a specific subset of but not all computations.
We are interested in both the generality and the discipline brought forward by the laws.

On the topic of program optimization under an FRP or arrow setting, Burchett et al.
(2007) introduce a concept called “lowering” that helps fuse pure functions in FrTime, a
strict FRP language embedded in Scheme, but unfortunately it does not handle stateful
computation such as the single unit delay; Nilsson (2005) makes use of several arrow
laws and generalized algebraic types to optimize Yampa implementation, and in particular
some stateful computations and event processing; Sculthorpe and Nilsson (2008) consider
change propagation as a means to optimize Yampa programs with a dynamic structure.

9.2 Co-algebraic Streams and Synchronous Languages

The co-algebraic property of streams is well known, and most relevant to our work is Caspi
and Pouzet’s representation of stream and stream functions in a functional language setting
(Caspi & Pouzet, 1998), which also uses a primitive similar to the trace operator (and hence
the arrow loop combinator) to model recursion. Their compilation technique, however,
lacks a systematic approach to optimize nested recursions. We consider our technique more
effective and more abstract.

Most synchronous languages, including the one introduced by Caspi and Pouzet (1998),
are able to compile stream programs into a form called single loop code by performing a
causality analysis to break the feedback loop of recursively defined values. Many efforts
have been made to generate efficient single loop code (Halbwachs et al., 1991; Amagbeg-
non et al., 1995), usually by a compilation from a high level dataflow source language to a
target language that is usually imperative and low level, but few express the transformation
at the source level to reach a normal form with strong characterization. Our discovery
of CCNF is original, and the optimization by normalization approach is targeting a lazy
functional language, namely Haskell, and making use of an advanced Haskell compiler to
further optimize and produce low level code.

Traditional compilation techniques for synchronous dataflow also had a modularity prob-
lem: they either require inlining of all definitions in order to properly analyze feedback
loops and thus lose modularity, or impose too strong a causality constraint that every
feedback loop must cross an explicit delay even for sub modules. Recently a range of
solutions aim to address this problem (Pouzet & Raymond, 2009; Lublinerman et al.,
2009; Lublinerman & Tripakis, 2008) using techniques centered around the decomposition
mechanism first proposed by Raymond (1988). However, such a problem simply ceases
to exist when we adopt a lazy functional language as an intermediate or even the target
language, for instance, as in our staged compilation for CCA. This is because the ability to
represent immediate loopbacks, or recursions at value level, is a coherent feature of lazy
languages. Also as a side note, CCA by itself does not preclude modular compilation, even
though its current implementation through Template Haskell requires full inlining of arrow
terms and hence is not modular.

ZU064-05-FPR arrowopt 3 May 2011 10:35

20 Hai Liu, Eric Cheng and Paul Hudak

Also relevant is the work by Rutten (2006) on high-order functional stream derivatives.
We believe that arrows are a more general abstraction than functional stream derivatives,
because the latter still exposes the structure of a stream. Moreover, arrows give rise to a
high-level language with richer algebraic properties than the 2-adic calculus considered by
Rutten (2006).

9.3 Stream Fusion

Stream fusion (Coutts et al., 2007) can help fuse zips, left folds, and nested lists into
efficient loops. But on its own, it does not optimize recursively and lazily defined streams
effectively.

Consider a stream generating the Fibonacci sequence. It is one of the simplest classic
examples that characterizes stateful stream computation. One way of writing it in Haskell
is to exploit laziness and zip the stream with itself:

fibs :: [Int]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

While the code is concise and elegant, such programming style relies too much on the
definition of an inductively defined structure. The explicit sharing of the stream fibs in the
definition is a blessing and a curse. On one hand, it runs in linear time and constant space.
On the other hand, the presence of the stream structure gets in the way of optimization.
None of the current fusion or deforestation techniques are able to effectively eliminate
cons cell allocations in this example. Real-world stream programs are usually much more
complex and involve more feedback, and the time spent in allocating intermediate structure
and by the garbage collector could degrade performance significantly.

We can certainly write a stream in stepper style that generates the Fibonacci sequence:

data Stream a = forall s . Stream (s→ Step a s) s
data Step a s = Yield a s

fib stream :: Stream Int
fib stream = Stream next (0,1) where next (a,b) = Yield r (b,r) where r = a+b

f1 :: Int
f1 = nth 5 fib stream -- 13

Stream fusion will fuse nth and fib stream to produce an efficient loop. For a comparison,
with our technique the arrow version of the Fibonacci sequence shown below compiles to
the same efficient loop as f1 above, and yet retains the benefit of being abstract and concise.

fibA = proc → do
rec let r = d2+d1

d1← init 0−≺ d2
d2← init 1−≺ r

returnA−≺ r

We must stress that writing stepper functions is not always as easy as in trivial examples
like fib and exp. Most non-trivial stream programs that we are concerned with contain many
recursive parts, and expressing them in terms of combinators in a non-recursive way can get

ZU064-05-FPR arrowopt 3 May 2011 10:35

Journal of Functional Programming 21

unwieldy. Moreover, this kind of coding style exposes a lot of operational details which are
arguably unnecessary for representing the underlying algorithm. In contrast, arrow syntax
relieves the burden of coding in combinator form and allows recursion via the rec keyword.
It also completely hides the actual implementation of the underlying stream structure and
is therefore more abstract.

10 Conclusion

Our key contribution is the discovery of a normal form for core Yampa, or CCA, programs:
any CCA program can be transformed into a single loop with just one pure (and strongly
normalizing) function and a set of initial states. This discovery has practical implications
in implementing not just Yampa, but a broader class of synchronous dataflow languages
and stream computations. Any CCA program can be reliably and predictably optimized
into an efficient machine-friendly loop. The process can be fully automated, allowing
programmers to program at an abstract level while getting performance competitive to
programs written in low-level imperative languages.

Acknowledgements We thank anonymous reviewers for pointers to relevant work. This
research was supported in part by NSF grants CCF-0811665 and CNS-0720682, and by a
grant from Microsoft Research.

References

Amagbegnon, Pascalin, Besnard, Loc, & Guernic, Paul Le. (1995). Implementation of the data-
flow synchronous language SIGNAL. Pages 163–173 of: Conference on Programming Language
Design and Implementation. ACM.

Atkey, Robert. (2008). What is a categorical model of arrows? Mathematically Structured Functional
Programming.

Bjesse, Per, Claessen, Koen, Sheeran, Mary, & Singh, Satnam. (1998). Lava: Hardware design
in Haskell. Pages 174–184 of: Proc. of International Conference on Functional Programming
(ICFP). ACM.

Burchett, Kimberley, Cooper, Gregory H., & Krishnamurthi, Shriram. (2007). Lowering: A static
optimization technique for transparent functional reactivity. Pages 71–80 of: ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-Based Program Manipulation. ACM.

Caspi, P., Halbwachs, N., Pilaud, D., & Plaice, J.A. (1987). LUSTRE: A declarative language
for programming synchronous systems. Pages 178–188 of: Proc. of 14th ACM Symposium on
Principles of Programming Languages (POPL). ACM.

Caspi, Paul, & Pouzet, Marc. 1998 (Mar.). A co-iterative characterization of synchronous stream
functions. Coalgebraic Methods in Computer Science (CMCS). Electronic Notes in Theoretical
Computer Science. Extended version available as a VERIMAG tech. report no. 97–07 at
www.lri.fr/∼pouzet.

Cheng, Eric, & Hudak, Paul. 2009 (Jan.). Audio processing and sound synthesis in Haskell.
Tech. rept. YALEU/DCS/RR-1405. Computer Science Department, Yale University. Also see
http://haskell.cs.yale.edu.

Cheong, Mun Hon. 2005 (Nov.). Functional programming and 3D games. Also see
http://www.haskell.org/haskellwiki/Frag.

ZU064-05-FPR arrowopt 3 May 2011 10:35

22 Hai Liu, Eric Cheng and Paul Hudak

Colaço, Jean-Louis, Girault, Alain, Hamon, Grégoire, & Pouzet, Marc. (2004). Towards a higher-
order synchronous data-flow language. Pages 230–239 of: Proc. of the 4th ACM International
Conference on Embedded Software (EMSOFT). New York, NY, USA: ACM.

Courtney, Antony. (2004). Modelling user interfaces in a functional language. Ph.D. thesis,
Department of Computer Science, Yale University.

Courtney, Antony, & Elliott, Conal. (2001). Genuinely functional user interfaces. Pages 41–69 of:
Proc. of the 2001 ACM SIGPLAN Haskell Workshop. ACM.

Courtney, Antony, Nilsson, Henrik, & Peterson, John. (2003). The Yampa arcade. Pages 7–18 of:
Proc. of the 2003 ACM SIGPLAN Haskell Workshop. Uppsala, Sweden: ACM.

Coutts, Duncan, Leshchinskiy, Roman, & Stewart, Don. (2007). Stream fusion: From lists to streams
to nothing at all. Proc. of the International Conference on Functional Programming (ICFP). ACM.

Elliott, Conal, & Hudak, Paul. (1997). Functional reactive animation. Pages 263–273 of: Proc. of
the International Conference on Functional Programming (ICFP). ACM.

G. H. Mealy. (1955). A method for synthesizing sequential circuits. Bell System Technical Journal,
34(5), 1045–1079.

Giorgidze, George, & Nilsson, Henrik. (2008). Switched-on Yampa. Pages 282–298 of: Hudak, Paul,
& Warren, David Scott (eds), Proc. of the 10th International Symposium on Practical Aspects of
Declarative Languages (PADL). Lecture Notes in Computer Science, vol. 4902. San Francisco,
CA, USA: Springer.

Goertzel, Gerald. (1958). An algorithm for the evaluation of finite trigonometric series. American
Mathematical Monthly, 65(Jan.), 34–35.

Halbwachs, N., Raymond, P., & Ratel, C. (1991). Generating efficient code from data-flow programs.
Pages 207–218 of: Maluszyński, J., & Wirsing, M. (eds), Proc. of the Third International
Symposium on Programming Language Implementation and Logic Programming. Springer-
Verlag.

Harel, David. (1980). On folk theorems. Commun. ACM, 23(July), 379–389.

Hasegawa, Masahito. (1997). Recursion from cyclic sharing: Traced monoidal categories and models
of cyclic lambda calculi. Pages 196–213 of: Proc. of the Third International Conference on Typed
Lambda Calculi and Applications (TLCA). London, UK: Springer-Verlag.

Huang, Liwen, Hudak, Paul, & Peterson, John. (2007). HPorter: Using arrows to compose parallel
processes. Pages 275–289 of: Proc. of Practical Aspects of Declarative Languages (PADL).
Springer-Verlag LNCS 4354.

Hudak, Paul. (1996). Building domain specific embedded languages. ACM computing surveys, 28A,
(electronic).

Hudak, Paul. (1998). Modular domain specific languages and tools. Pages 134–142 of: Proc. of Fifth
International Conference on Software Reuse. IEEE Computer Society.

Hudak, Paul, Courtney, Antony, Nilsson, Henrik, & Peterson, John. (2003). Arrows, robots, and
functional reactive programming. Pages 159–187 of: Summer School on Advanced Functional
Programming (AFP 2002), Oxford University. Lecture Notes in Computer Science, vol. 2638.
Springer-Verlag.

Hudak, Paul, Liu, Hai, Stern, Michael, & Agarwal, Ashish. 2008 (July). Yampa meets the worm.
Tech. rept. YALEU/DCS/RR-1408. Yale University. Also see http://haskell.cs.yale.edu.

Hughes, John. (2000). Generalising monads to arrows. Science of Computer Programming, 37(1-3),
67–111.

Hughes, John. (2004). Programming with arrows. Pages 73–129 of: Vene, Varmo, & Uustalu,
Tarmo (eds), Advanced Functional Programming. Lecture Notes in Computer Science, vol. 3622.
Springer.

ZU064-05-FPR arrowopt 3 May 2011 10:35

Journal of Functional Programming 23

Jansson, Patrik, & Jeuring, Johan. (1999). Polytypic compact printing and parsing. Pages 273–287
of: Swierstra, S. Doaitse (ed), European Symposium on Programming (ESOP). Lecture Notes in
Computer Science, vol. 1576. Springer.

Lindley, Sam, Wadler, Philip, & Yallop, Jeremy. (2010). The arrow calculus (functional pearl).
Journal of Functional Programming, 20(1), 51–69.

Liu, Hai, & Hudak, Paul. (2007). Plugging a space leak with an arrow. Electronic Notes in Theoretical
Computer Science, 193, 29–45.

Liu, Hai, & Hudak, Paul. (2010). An ode to arrows. Pages 152–166 of: Carro, Manuel, & Peña,
Ricardo (eds), Proc. of the 12th International Symposium on Practical Aspects of Declarative
Languages (PADL), Madrid, Spain, January 18-19, 2010. Lecture Notes in Computer Science,
vol. 5937. Springer.

Lublinerman, Roberto, & Tripakis, Stavros. (2008). Modularity vs. reusability: code generation from
synchronous block diagrams. Pages 1504–1509 of: Proc. of the Conference on Design, Automation
and Test in Europe. DATE ’08. New York, NY, USA: ACM.

Lublinerman, Roberto, Szegedy, Christian, & Tripakis, Stavros. (2009). Modular code generation
from synchronous block diagrams: modularity vs. code size. Pages 78–89 of: Proc. of the 36th
annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL
’09. New York, NY, USA: ACM.

McBride, Conor, & Paterson, Ross. (2008). Applicative programming with effects. Journal of
Functional Programming, 18(1), 1–13.

Moggi, Eugenio. (1991). Notions of computation and monads. Information and Computation, 93(1),
55–92.

Nilsson, Henrik. (2005). Dynamic optimization for functional reactive programming using
generalized algebraic data types. Pages 54–65 of: Proc. of International Conference on Functional
Programming (ICFP). ACM.

Oertel, Clemens. 2006 (May). RatTracker: A functional-reactive approach to flexible control of
behavioural conditioning experiments. Ph.D. thesis, Wilhelm-Schickard-Institute for Computer
Science at the University of Tübingen.

Paterson, Ross. (2001). A new notation for arrows. Pages 229–240 of: Proc. of International
Conference on Functional Programming (ICFP). ACM.

Peterson, John, Hudak, Paul, & Elliott, Conal. (1999a). Lambda in motion: Controlling robots with
Haskell. Pages 91–105 of: Proc. of the First International Workshop on Practical Aspects of
Declarative Languages (PADL). ACM.

Peterson, John, Hager, Gregory, & Hudak, Paul. (1999b). A language for declarative robotic
programming. Pages 1144–1151 of: International Conference on Robotics and Automation.

Peyton Jones, Simon, et al. . (2003). The Haskell 98 language and libraries: The revised report.
Journal of Functional Programming, 13(1), 0–255.

Pouzet, Marc, & Raymond, Pascal. (2009). Modular static scheduling of synchronous data-flow
networks: an efficient symbolic representation. Pages 215–224 of: Proc. of the seventh ACM
International Conference on Embedded Software. EMSOFT ’09. New York, NY, USA: ACM.

Power, John, & Thielecke, Hayo. (1999). Closed freyd- and kappa-categories. Pages 625–634 of:
Proc. of 26th International Colloquium on Automata, Languages and Programming (ICALP).

Raymond, Pascal. (1988). Compilation séparée de programmes lustre. Master’s thesis. IMAG. In
French.

Rutten, Jan J. M. M. (2006). Algebraic specification and coalgebraic synthesis of mealy automata.
Electronic Notes in Theoretical Computer Science, 160, 305–319.

Sculthorpe, Neil, & Nilsson, Henrik. (2008). Optimisation of dynamic, hybrid signal function
networks. Pages 97–112 of: Proc. of the 9th Symposium on Trends in Functional Programming
(TFP). Intellect.

ZU064-05-FPR arrowopt 3 May 2011 10:35

24 Hai Liu, Eric Cheng and Paul Hudak

Sheard, Tim, & Peyton Jones, Simon. (2002). Template metaprogramming for Haskell. Pages 1–16
of: Chakravarty, Manuel M. T. (ed), Proc. of the 2002 ACM SIGPLAN Haskell Workshop. ACM.

Stephens, Robert. (1997). A survey of stream processing. Acta Informatica, 34(7), 491–541.
Street, Ross Howard, Joyal, A., & Verity, D. (1996). Traced monoidal categories. Mathematical

Proc. of the Cambridge Philosophical Society, 119(3), 425–446.
Thies, William, Karczmarek, Michal, & Amarasinghe, Saman P. (2002). StreamIt: A language for

streaming applications. Pages 179–196 of: Proc. of the 11th International Conference on Compiler
Construction (CC). London, UK: Springer-Verlag.

Uustalu, Tarmo, & Vene, Varmo. (2005). The essence of dataflow programming. Pages 135–167
of: Horváth, Zoltán (ed), Central European Functional Programming School (CEFP), Budapest,
Hungary, July 4-15, 2005. Lecture Notes in Computer Science, vol. 4164. Springer.

Wadge, William W., & Ashcroft, Edward A. (1985). LUCID, the dataflow programming language.
San Diego, CA, USA: Academic Press Professional, Inc.

A Benchmark Programs

sr = 44100 :: Int
dt = 1/ (fromIntegral sr)

exp :: ArrowInit a⇒ a () Double
exp = proc ()→ do

rec let e = 1+ i
i← integral−≺ e

returnA−≺ e

integral :: ArrowInit a⇒ a Double Double
integral = proc x→ do

rec let i′ = i+ x∗dt
i← init 0−≺ i′

returnA−≺ i

sine :: ArrowInit a⇒ Double→ a () Double
sine freq = proc → do

rec x← init i−≺ r
y← init 0−≺ x
let r = c∗ x− y

returnA−≺ r
where

omh = 2∗pi/ (fromIntegral sr)∗ freq
i = sin omh
c = 2∗ cos omh

oscSine :: ArrowInit a⇒ Double→ a Double Double
oscSine f0 = proc cv→ do

let f = f0∗ (2∗∗ cv)
phi← integral−≺ 2∗pi∗ f
returnA−≺ sin phi

testOsc :: ArrowInit a⇒ (Double→ a Double Double)→ a () Double

ZU064-05-FPR arrowopt 3 May 2011 10:35

Journal of Functional Programming 25

testOsc f = constant 1 ≫ f 440

sciFi :: ArrowInit a⇒ a () Double
sciFi = proc ()→ do

und← oscSine 3.0−≺ 0
swp← integral−≺−0.25
audio← oscSine 440−≺ und ∗0.2+ swp+1
returnA−≺ audio

robot :: ArrowInit a⇒ a (Double,Double) Double
robot = proc inp→ do

let vr = snd inp
vl = fst inp
vz = vr + vl

t← integral−≺ vr− vl
let t′ = t /10
x← integral−≺ vz∗ cos t′

y← integral−≺ vz∗ sin t′

returnA−≺ x/2+ y/2

testRobot :: ArrowInit a⇒ a (Double,Double) Double→ a () Double
testRobot bot = proc ()→ do

u← sine 2−≺ ()
robot−≺ (u,1−u)

B Proof for the sequencing rule of loopD

The sequencing rule from Figure 8 is directly derivable from the following equation:

loopD i f ≫ loopD j g = loopD (i, j) (assoc′ (juggle′ (g× id) . (f × id)))

In order to show the above is true, we first prove three lemmas.

Lemma B.1
Given a function definition revjuggle (a,(b,c)) = (b,(a,c)), we show that for all f :

second (second f) = arr revjuggle ≫ second (second f) ≫ arr revjuggle

Proof
We start from the left-hand side by equational reasoning.

lhs
= second (second f)

definition of second
= arr swap ≫ first (arr swap ≫ first f ≫ arr swap) ≫ arr swap

functor of first,extension of first
= arr swap ≫ arr (swap× id) ≫ first (first f) ≫ arr (swap× id) ≫ arr swap

identity of arr, id = assoc−1 . assoc,and composition of arr
= arr swap ≫ arr (swap× id) ≫ first (first f) ≫ arr assoc ≫ arr assoc−1

≫ arr (swap× id) ≫ arr swap

ZU064-05-FPR arrowopt 3 May 2011 10:35

26 Hai Liu, Eric Cheng and Paul Hudak

association of first
= arr swap ≫ arr (swap× id) ≫ arr assoc ≫ first f ≫ arr assoc−1

≫ arr (swap× id) ≫ arr swap
composition of arr

= arr (assoc . (swap× id) . swap) ≫ first f ≫ arr (swap . swap× id . assoc−1)
unfold function definition and beta reduce

= arr (λ (a,(b,c))→ (c,(a,b))) ≫ first f ≫ arr (λ (c,(a,b))→ (a,(b,c)))

Then from the right-hand side:

rhs
= arr revjuggle ≫ second (second f) ≫ arr revjuggle

definition of second
= arr revjuggle ≫ arr swap ≫ first (arr swap ≫ first f ≫ arr swap)

≫ arr swap ≫ arr revjuggle
functor of first,extension of first

= arr revjuggle ≫ arr swap ≫ arr (swap× id) ≫ first (first f)
≫ arr (swap× id) ≫ arr swap ≫ arr revjuggle

identity of arr, id = assoc−1 . assoc,and composition of arr
= arr revjuggle ≫ arr swap ≫ arr (swap× id) ≫ first (first f)

≫ arr assoc ≫ arr assoc−1 ≫ arr (swap× id) ≫ arr swap ≫ arr revjuggle
association of first

= arr revjuggle ≫ arr swap ≫ arr (swap× id) ≫ arr assoc ≫ first f
≫ arr assoc−1 ≫ arr (swap× id) ≫ arr swap ≫ arr revjuggle

composition of arr
= arr (assoc . swap× id . swap . revjuggle) ≫ first f

≫ arr (revjuggle . swap . swap× id . assoc−1)
unfold function definition and beta reduce

= arr (λ (a,(b,c))→ (c,(a,b))) ≫ first f ≫ arr (λ (c,(a,b))→ (a,(b,c)))

Therefore, lhs = rhs. ¤

Lemma B.2
We show that for all f and g:

second (first f) ≫ arr (assoc . swap) = arr (assoc . swap) ≫ first f

Proof
We start from the left-hand side by equational reasoning:

lhs
= second (first f) ≫ arr (assoc . swap)

definition of second
= arr swap ≫ first (first f) ≫ arr swap ≫ arr (assoc . swap)

identity of arr, id = assoc−1 . assoc,and composition of arr
= arr swap ≫ first (first f) ≫ arr assoc ≫ arr assoc−1 ≫ arr swap

≫ arr (assoc . swap)
association of first

ZU064-05-FPR arrowopt 3 May 2011 10:35

Journal of Functional Programming 27

= arr swap ≫ arr assoc ≫ first f ≫ arr assoc−1 ≫ arr swap
≫ arr (assoc . swap)

composition of arr
= arr (assoc . swap) ≫ first f ≫ arr (assoc . swap . swap . assoc−1)

identity of arr, id = assoc . swap . swap . assoc−1

= arr (assoc . swap) ≫ first f ¤

Lemma B.3
We show that for all f :

first f = arr revjuggle ≫ second (first f) ≫ arr revjuggle

Proof
We start from the right-hand side by equational reasoning:

rhs
= arr revjuggle ≫ second (first f) ≫ arr revjuggle

definition of second
= arr revjuggle ≫ arr swap>>first (first f) ≫ arr swap ≫ arr revjuggle

identity of arr, id = assoc−1 . assoc,and composition of arr
= arr revjuggle ≫ arr swap>>first (first f) ≫ arr assoc ≫ arr assoc−1

≫ arr swap ≫ arr revjuggle
association of first

= arr revjuggle ≫ arr swap>>arr assoc ≫ first f ≫ arr assoc−1

≫ arr swap ≫ arr revjuggle
identity of arr, id = id× swap . id× swap,and composition of arr

= arr revjuggle ≫ arr swap>>arr assoc ≫ arr (id× swap) ≫ arr (id× swap)
≫ first f ≫ arr assoc−1

exchange of first
= arr revjuggle ≫ arr swap>>arr assoc ≫ arr (id× swap) ≫ first f

≫ arr (id× swap) ≫ arr assoc−1

composition of arr
= arr (id× swap . assoc . swap . revjuggle) ≫ first f

≫ arr (revjuggle . swap . assoc−1 . id× swap)
identity of arr, id = id× swap . assoc . swap . revjuggl
and id = revjuggle . swap . assoc−1 . id× swap

= first f ¤

We then show that

loopD i f ≫ loopD j g = loopD (i, j) (assoc′ (juggle′ (g× id) . (f × id)))

holds by equational reasoning, starting from the left-hand side:

loopD i f ≫ loopD j g
definition of loopD

= loop (arr f ≫ second (init i)) ≫ loop (arr g ≫ second (init j))
left tightening of loop

ZU064-05-FPR arrowopt 3 May 2011 10:35

28 Hai Liu, Eric Cheng and Paul Hudak

= loop (first (loop (arr f ≫ second (init i))) ≫ (arr g ≫ second (init j)))
definition of second

= loop (arr swap ≫ second (loop (arr f ≫ second (init i))) ≫ arr swap
≫ (arr g ≫ second (init j)))

superposing of loop
= loop (arr swap ≫ loop (arr assoc ≫ second (arr f ≫ second (init i))

≫ arr assoc−1) ≫ arr swap ≫ (arr g ≫ second (init j)))
left tightening of loop

= loop (loop (first (arr swap) ≫ arr assoc ≫ second (arr f ≫ second (init i))
≫ arr assoc−1) ≫ arr swap ≫ (arr g ≫ second (init j)))

extension of first
= loop (loop (arr (swap× id) ≫ arr assoc ≫ second (arr f ≫ second (init i))

≫ arr assoc−1) ≫ arr swap ≫ (arr g ≫ second (init j)))
associativity of ≫

= loop (loop (arr (swap× id) ≫ arr assoc ≫ second (arr f ≫ second (init i))
≫ arr assoc−1) ≫ (arr swap ≫ arr g ≫ second (init j)))

right tightening of loop
= loop (loop (arr (swap× id) ≫ arr assoc ≫ second (arr f ≫ second (init i))

≫ arr assoc−1 ≫ first (arr swap ≫ arr g ≫ second (init j))))
vanishing of loop

= loop (arr assoc−1 ≫ arr (swap× id) ≫ arr assoc ≫ second (arr f
≫ second (init i)) ≫ arr assoc−1 ≫ first (arr swap ≫ arr g ≫ second (init j))
≫ arr assoc)

identity of arr, id = id× swap . id× swap,composition of arr
= loop (arr (id× swap) ≫ arr (id× swap) ≫ arr assoc−1 ≫ arr (swap× id)

≫ arr assoc ≫ second (arr f ≫ second (init i)) ≫ arr assoc−1

≫ first (arr swap ≫ arr g ≫ second (init j)) ≫ arr assoc)
sliding of loop

= loop (arr (id× swap) ≫ arr assoc−1 ≫ arr (swap× id) ≫ arr assoc
≫ second (arr f ≫ second (init i)) ≫ arr assoc−1 ≫ first (arr swap
≫ arr g ≫ second (init j)) ≫ arr assoc ≫ arr (id× swap))

composition of arr,swap . assoc−1 = assoc . (swap× id) . assoc−1 . (id× swap)
= loop (arr (swap . assoc−1) ≫ second (arr f ≫ second (init i)) ≫ arr assoc−1

≫ first (arr swap ≫ arr g ≫ second (init j)) ≫ arr assoc ≫ arr (id× swap))
definition of second

= loop (arr (swap . assoc−1) ≫ second (arr f ≫ arr swap ≫ first (init i)
≫ arr swap) ≫ arr assoc−1 ≫ first (arr swap ≫ arr g ≫ second (init j))
≫ arr assoc ≫ arr (id× swap))

definition of first
= loop (arr (swap . assoc−1) ≫ second (arr f ≫ arr swap ≫ first (init i)

≫ arr swap) ≫ arr assoc−1 ≫ arr swap ≫ second (arr swap ≫ arr g
≫ second (init j)) ≫ arr swap ≫ arr assoc ≫ arr (id× swap))

functor and extension of second
= loop (arr (swap . assoc−1) ≫ second (arr (swap . f)) ≫ second (first (init i))

ZU064-05-FPR arrowopt 3 May 2011 10:35

Journal of Functional Programming 29

≫ arr (id× swap) ≫ arr assoc−1 ≫ arr swap ≫ arr (id× swap)
≫ second (arr g) ≫ second (second (init j)) ≫ arr swap ≫ arr assoc
≫ arr (id× swap))

Lemma B.1
= loop (arr (swap . assoc−1) ≫ second (arr (swap . f)) ≫ second (first (init i))

≫ arr (id× swap) ≫ arr assoc−1 ≫ arr swap ≫ arr (id× swap)
≫ second (arr g) ≫ arr revjuggle ≫ second (second (init j))
≫ arr revjuggle ≫ arr swap ≫ arr assoc ≫ arr (id× swap))

composition of arr, id = (id× swap) . assoc . swap . revjuggle, identity of arr
= loop (arr (swap . assoc−1) ≫ second (arr (swap . f)) ≫ second (first (init i))

≫ arr (id× swap) ≫ arr assoc−1 ≫ arr swap ≫ arr (id× swap)
≫ second (arr g) ≫ arr revjuggle ≫ second (second (init j)))

composition of arr,assoc . swap = (id× swap) . swap . assoc−1 . (id× swap)
= loop (arr (swap . assoc−1) ≫ second (arr (swap . f)) ≫ second (first (init i))

≫ arr (assoc . swap) ≫ second (arr g) ≫ arr revjuggle
≫ second (second (init j)))

Lemma B.2
= loop (arr (swap . assoc−1) ≫ second (arr (swap . f)) ≫ arr (assoc . swap)

≫ first (init i) ≫ second (arr g) ≫ arr revjuggle ≫ second (second (init j)))
commutativity

= loop (arr (swap . assoc−1) ≫ second (arr (swap . f)) ≫ arr (assoc . swap)
≫ second (arr g) ≫ first (init i) ≫ arr revjuggle ≫ second (second (init j)))

Lemma B.3
= loop (arr (swap . assoc−1) ≫ second (arr (swap . f)) ≫ arr (assoc . swap)

≫ second (arr g) ≫ arr revjuggle ≫ second (first (init i)) ≫ arr revjuggle
≫ arr revjuggle ≫ second (second (init j)))

composition of arr, id = revjuggle . revjuggle, identity of arr
= loop (arr (swap . assoc−1) ≫ second (arr (swap . f)) ≫ arr (assoc . swap)

≫ second (arr g) ≫ arr revjuggle ≫ second (first (init i))
≫ second (second (init j)))

extension of second,composition of arr
= loop (arr (revjuggle . (id×g) . assoc . swap . id× (swap . f) . swap . assoc−1)

≫ second (first (init i)) ≫ second (second (init j)))
assoc′ (juggle′ (g× id) . (f × id)) = revjuggle . (id×g) .

assoc . swap . id× (swap . f) . swap . assoc−1

= loop (arr (assoc′ (juggle′ (g× id) . (f × id))) ≫ second (first (init i))
≫ second (second (init j)))

functor of second
= loop (arr (assoc′ (juggle′ (g× id) . (f × id))) ≫ second (first (init i)

≫ second (init j)))
product of init

= loop (arr (assoc′ (juggle′ (g× id) . (f × id))) ≫ second (init (i, j)))

¤

ZU064-05-FPR arrowopt 3 May 2011 10:35

