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Contributions

1. Formalization of Causal Commutative Arrows (CCA):

◮ Definition of CCA and its laws.

◮ Definition of a CCA language that is strongly normalizing.

◮ Proof of the soundness and termination of CCA normalization.

2. Implementation of CCA normalization/optimization:

◮ Compile-time normalization through meta-programming.

◮ Run-time performance improvement by orders of magnitude.

3. Applications of CCA:

◮ Synchronous Dataflow

• relating CCA normal form to an operational semantics.

◮ Ordinary Differential Equations (ODE)

• designing embedded DSLs, solving space leaks.

◮ Functional Reactive Programming (FRP)

• solving space leaks, extending CCA for hybrid modeling.
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What is a good abstraction for Functional Reactive Program-

ming (FRP)?
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Motivation

What is a good abstraction for Functional Reactive Program-

ming (FRP)?

What is a good abstraction?

◮ Abstract, high-level, more focus, less detail.

◮ General enough to express interesting programs.

◮ Specific enough to make use of domain knowledge.

What is FRP?
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Part I: FRP
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Functional Reactive Programming

FRP is a paradigm for programming time based hybrid systems, with

applications in graphics, animation, robotics, GUI, vision, etc.

FRP belongs to a larger family of synchronous dataflow languages.
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Functional Reactive Programming

FRP is a paradigm for programming time based hybrid systems, with

applications in graphics, animation, robotics, GUI, vision, etc.

FRP belongs to a larger family of synchronous dataflow languages.

◮ Dataflow: data flow (along edges) between instructions (nodes).

◮ Synchronous: computation in each cycle is instantaneous.

◮ Hybrid: FRP models both continuous and discrete components.

How do we program such systems?
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First-class Signals

Represent time changing quantities as an abstract data type:

Signal a ≈ Time → a

Example: a robot simulator. Its robots have a differential drive.



6Example: Robot Simulator

The equations governing the x position of a differential drive robot:

x(t) =
1

2

∫ t

0

(vr(t) + vl(t)) cos(θ(t))dt

θ(t) =
1

l

∫ t

0

(vr(t)− vl(t))dt

The corresponding FRP program: (Note the lack of explicit time)

x = (1 / 2) ∗ integral ((vr + vl) ∗ cos θ)

θ = (1 / l) ∗ integral (vr − vl)

Domain specific operators:

(+) :: Signal a → Signal a → Signal a

(∗) :: Signal a → Signal a → Signal a

integral :: Signal a → Signal a

...
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First-class Signals: Good or Bad?

Good:

◮ Conceptually simple and concise.

◮ Easy to program with, no clutter.

◮ The basis for a large number of FRP implementations.
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First-class Signals: Good or Bad?

Good:

◮ Conceptually simple and concise.

◮ Easy to program with, no clutter.

◮ The basis for a large number of FRP implementations.

Bad:

◮ Higher-order signals Signal (Event (Signal a)) are ambiguous.

◮ Time and space leak: program slows down and consumes memory

at an unexpected rate.
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Improving the Abstraction with Signal Functions

Instead of first-class signals, use first-class signal functions:

SF a b ≈ Signal a → Signal b

Yampa is a FRP language that models signal functions using

arrows.



9Signal Functions are Arrows

Arrows (Hughes 2000) are a generalization of monads. In Haskell:

class Arrow a where

arr :: (b → c)→ a b c

(≫) :: a b c → a c d → a b d

first :: a b c → a (b, d) (c, d)

Support both sequential and parallel composition.

second :: (Arrow a)⇒ a b c → a (d , b) (d , c)

second f = arr swap ≫ first f ≫ arr swap

where swap (a, b) = (b, a)

(⋆⋆⋆) :: (Arrow a)⇒ a b c → a b′ c′ → a (b, b′) (c, c′)

f ⋆⋆⋆ g = first f ≫ second g

(&&&) :: (Arrow a)⇒ a b c → a b c′ → a b (c, c′)

f &&&g = arr (λx → (x , x ))≫ (f ⋆⋆⋆ g)
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Picturing an Arrow

(a) arr f (b) f ≫ g (c) first f

(d) f ⋆⋆⋆ g (e) loop f

To model recursion, Paterson (2001) introduces ArrowLoop:

class Arrow a ⇒ ArrowLoop a where

loop :: a (b, d) (c, d)→ a b c
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Robot Simulator Revisit

xSF = (((vrSF&&&vlSF )≫ arr (uncurry (+)))&&&(thetaSF ≫ arr cos))

≫ arr (uncurry (∗))≫ integral ≫ arr (/2)
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Robot Simulator Revisit

&&&

≫

≫

&&&

xSF = (((vrSF&&&vlSF )≫ arr (uncurry (+)))&&&(thetaSF ≫ arr cos))

≫ arr (uncurry (∗))≫ integral ≫ arr (/2)



11-e

Robot Simulator Revisit

&&&

≫
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&&& ≫

xSF = (((vrSF&&&vlSF )≫ arr (uncurry (+)))&&&(thetaSF ≫ arr cos))

≫ arr (uncurry (∗))≫ integral ≫ arr (/2)
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Robot Simulator Revisit

&&&

≫

≫

&&& ≫ ≫

xSF = (((vrSF&&&vlSF )≫ arr (uncurry (+)))&&&(thetaSF ≫ arr cos))

≫ arr (uncurry (∗))≫ integral ≫ arr (/2)
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Robot Simulator Revisit

&&&

≫

≫

&&& ≫ ≫ ≫

xSF = (((vrSF&&&vlSF )≫ arr (uncurry (+)))&&&(thetaSF ≫ arr cos))

≫ arr (uncurry (∗))≫ integral ≫ arr (/2)



12Robot Simulator in Arrow Syntax

xSF = proc inp → do

vr ← vrSF −≺ inp

vl ← vlSF −≺ inp

θ ← thetaSF−≺ inp

i ← integral −≺ (vr + vl) ∗ cos θ

returnA−≺ (i / 2)
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Modeling Discrete Events

Events are instantaneous and have no duration.

data Event a = Event a | NoEvent

Example: coerce from an discrete-time event stream to

continuous-time signal by “holding” a previous event value.

hold :: a → SF (Event a) a
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Infinitesimal Delay with iPre

As a more primitive operator than hold , iPre puts an infinites-

imal delay over the input signal, and initializes it with a new

value.

iPre :: a → SF a a

We can implement hold using iPre:

hold i = proc e → do

rec y ← iPre i−≺ z

let z = case e of Event x → x

NoEvent → y

returnA−≺ z
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What’s Good About Using Arrows in FRP

◮ Highly abstract, and yet allow domain specific extensions.

◮ Like monads, they are composable and can be stateful.

◮ Modular: both input and output are explicit.

◮ Higher-order signal function SF a (b,Event (SF a b)) as

event switch.

◮ Formal properties expressed as laws.
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Arrow Laws

left identity arr id ≫ f = f

right identity f ≫ arr id = f

associativity (f ≫ g)≫ h = f ≫ (g ≫ h)

composition arr (g . f ) = arr f ≫ arr g

extension first (arr f ) = arr (f × id)

functor first (f ≫ g) = first f ≫ first g

exchange first f ≫ arr (id × g) = arr (id × g)≫ first f

unit first f ≫ arr fst = arr fst ≫ f

association first (first f )≫ arr assoc = arr assoc ≫ first f

where assoc ((a, b), c) = (a, (b, c))
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Arrow Loop Laws

left tightening loop (first h ≫ f ) = h ≫ loop f

right tightening loop (f ≫ first h) = loop f ≫ h

sliding loop (f ≫ arr (id ∗ k)) = loop (arr (id × k)≫ f )

vanishing loop (loop f ) = loop (arr assoc−1
≫ f ≫ arr assoc)

superposing second (loop f ) = loop (arr assoc≫ second f ≫ arr assoc−1)

extension loop (arr f ) = arr (trace f )

where trace f b = let (c, d) = f (b, d) in c
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FRP as a Domain Specific Language

What makes a good abstraction for FRP?
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FRP as a Domain Specific Language

What makes a good abstraction for FRP?
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What is domain specific about FRP? Causality.
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FRP as a Domain Specific Language

What makes a good abstraction for FRP?

Signals? flexible, but ... not enough discipline.

Arrows? Disciplined, but ... not specific enough.

What is domain specific about FRP? Causality.

(Causal: current output only depends on current and previous inputs.)

Can we refine the arrow abstraction to capture causality?
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Part II. CCA
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Causal Commutative Arrows (CCA)

Introduce a new operator init :

class ArrowLoop a ⇒ ArrowInit a where

init :: b → a b b

and two additional laws:

commutativity first f ≫ second g = second g ≫ first f

product init i ⋆⋆⋆ init j = init (i , j )

and still remain abstract!
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What’s Good about CCA

CCA provides a core set of operators for dataflow computa-

tions.

◮ The init operator does not talk about time, and the

product law puts little restriction over its actual semantics.

◮ The commutativity law states an important non-interference

property so that side effects can only be local.
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What’s Good about CCA

CCA provides a core set of operators for dataflow computa-

tions.

◮ The init operator does not talk about time, and the

product law puts little restriction over its actual semantics.

◮ The commutativity law states an important non-interference

property so that side effects can only be local.

Quiz: why not make this a law?

init i ≫ arr f = arr f ≫ init (f i)
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The CCA Language: Syntax

Variables V ::= x | y | z | ...

Types A,B ,C ::= 1 | M × N | A→ B | A B

Expressions M ,N ::= () | V | (M ,N ) | fst M | snd M |

λV .M | M N | trace M

Programs P ,Q ::= arr M | P ≫ Q | first P | loop P | init M

Environment Γ ::= x0 : A0, ..., xn : An

◮ Typed lambda calculus extended with unit, product, arrow and trace.

◮ Instead of type classes, use A B to denote arrow type.

◮ Programs and expressions are separated on purpose, so that pro-

grams are only finite compositions of arrow combinators.
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The CCA Language: Types

(UNIT) Γ ⊢ () : 1 (VAR)
x : A ∈ Γ

Γ ⊢ x : A
(TRACE)

Γ ⊢ M : A × C → B × C

Γ ⊢ trace M : A → B

(ABS)
Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A → B
(APP)

Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ M N : B

(PAIR)
Γ ⊢ M : A Γ ⊢ N : B

Γ ⊢ (M, N) : A × B
(FST)

Γ ⊢ M : A × B

Γ ⊢ fst M : A
(SND)

Γ ⊢ M : A × B

Γ ⊢ snd M : B

(ARR)
⊢ M : A → B

⊢ arr M : A B
(SEQ)

⊢ P : A B ⊢ Q : B C

⊢ P ≫Q : A C

(FIRST)
⊢ P : A B

⊢ first P : A × C  B × C
(LOOP)

⊢ P : A × C  B × C

⊢ loop P : A B

(INIT)
⊢ M : A

⊢ init M : A A
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Causal Commutative Normal Form (CCNF)

(f) Original (g) Normalized

Theorem (CCNF) For all well typed CCA program p : A  B, there exists

a normal form pnorm , called the Causal Commutative Normal Form,

which is either of the form arr f , or loopD i f for some i and f , such that

pnorm : A  B, and p ⇓ pnorm . In unsugared form, the second form is

equivalent to

loopD i f = loop (arr f ≫ second (init i))
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Normalization Explained

◮ Based on arrow laws, but directed.

◮ The two new laws, commutativity and product, are essential.

◮ Best illustrated by pictures...
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Re-order Parallel Pure and Stateful Arrows

Related law: exchange (a special case of commutativity).
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Re-order Sequential Pure and Stateful Arrows

Related laws: tightening, sliding, and definition of second.
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Change Sequential to Parallel

Related laws: product, tightening, sliding, and definition of second.
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Move Sequential into Loop

Related law: tightening.
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Move Parallel into Loop

Related laws: superposing, and definition of second.
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Fuse Nested Loops

Related laws: commutativity, product, tightening, and vanishing.
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Part III. Applications



27Synchronous Dataflow

Programs written in a stream based dataflow language (Lucid):

ones = 1 ‘fby ‘ ones fibs = let f = 0 ‘fby‘ g

sum x = x + 0 ‘fby‘ sum x g = 1 ‘fby ‘ (f + g)

nats = sum ones in f

Compare to programs written in arrows:

ones = arr (λ → 1) fibs = proc → do

sum = proc x → do rec f ← init 0−≺ g

rec s ← init 0−≺ s ′ g ← init 1−≺ (f + g)

let s ′ = s + x returnA−≺ f

returnA−≺ s ′

nats = ones ≫ sum

Stream functions over discrete streams are arrows. We instantiate CCA

by assigning init the meaning of a unit delay, just like ‘fby ‘.
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Synchronous Dataflow: Normalization Example

Same fibs program written in arrow combinators:

fibs = loop (arr snd ≫ loop (arr (uncurry (+))≫ init 1≫ arr dup)≫

init 0≫ arr dup)

where dup x = (x , x )

Its normal form:

ccnf fibs = loopD (0, 1) (λ( , (x , y))→ (x , (y , x + y)))

(a) Original (b) Normalized
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CCNF Tuple and Operational Semantics

We call the pair (i , f ) a CCNF tuple for a CCNF in the form

loopD i f .

runccnf :: (d , (b, d)→ (c, d))→ [b ]→ [c ]

runccnf (i , f ) = g i

where g i (x : xs) = let (y , i ′) = f (x , i) in y : g i ′ xs

runccnf implements an operational semantics for causal

stream functions that is also known as a Mealy machine, a

form of automata.

By using CCNF tuples directly, we avoid all arrow structures!
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Dataflow Benchmarks (Speed Ratio)

Name GHC 1 arrowp2 CCNF 3 CCNF Tuple4

sine 1.0 2.40 17.05 470.56

fibonacci 1.0 1.87 16.48 123.15

factorial 1.0 3.09 15.84 22.62

bounded counter 1.0 3.22 44.48 98.91

◮ Same arrow source programs written in arrow syntax.

◮ Same arrow implementation in Haskell.

◮ Only difference is syntactic:

1. Translated to combinators by GHC’s built-in arrow compiler.

2. Translated to combinators by Paterson’s arrowp preprocessor.

3. Arrow combinator after CCA normalization.

4. CCNF tuple after CCA normalization.
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Representing Autonomous ODE

An ordinary differential equation (ODE) of order n is of the

form:

f (n) = F (t, f, f ′, . . . , f (n−1))

for an unknown function f(t), with its nth derivative described

by f (n), where f ∈ R→ R and t ∈ R.

An initial value problem of a first order autonomous ODE is of

the form:

f ′ = F (f) s.t. f(t0) = f0

The given pair (t0, f0) ∈ R× R is called the initial condition.
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Function Mathematics Haskell

Sine wave y′′ = −y y = integral y0 y ′

y ′ = integral y1 (−y)

Damped oscillator y′′ = −cy′ − y y = integral y0 y ′

y ′ = integral y1 (−c ∗ y ′ − y)

Lorenz attractor x′ = σ(y − x) x = integral x0 (σ ∗ (y − x))

y′ = x(ρ− z)− y y = integral y0 (x ∗ (ρ− z )− y)

z′ = xy − βz z = integral z0 (x ∗ y − β ∗ z )

ODE represented as a tower-of-derivatives (Karczmarczuk 1998):

data D a = D {val :: a, der :: D a }

(+) :: D a → D a → D a

(∗) :: D a → D a → D a

integral :: a → D a → D a

integral v d = D v d
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DSL for ODE Using Arrows

Sine wave y′′ = −y proc ()→ do

rec y ← integral y0−≺ y ′

y ′ ← integral y1−≺ −y

returnA−≺ y

Damped oscillator y′′ = −cy′ − y proc ()→ do

rec y ← integral y0−≺ y ′

y ′ ← integral y1−≺ −c ∗ y ′ − y

returnA−≺ y

Lorenz attractor x′ = σ(y − x) proc ()→ do

y′ = x(ρ− z)− y rec x ← integral x0−≺ σ ∗ (y − x)

z′ = xy − βz y ← integral y0−≺ x ∗ (ρ− z )− y

z ← integral z0−≺ x ∗ y − β ∗ z

returnA−≺ (x , y , z )
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ODE Arrows are CCA

The integral function is indeed just the init operator in CCA.

(c) Original (d) Normalized

After normalization to an CCNF tuple (i , f ) :: (s, (a, s)→ (b, s))

◮ The state i is a nested tuple that represents a vector of initial values.

◮ The pure function f computes the value of derivatives.

ODEs can be numerically solved by using just CCNF tuples!
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Extending CCA for Yampa Arrows

Yampa models both discrete-time and continuous-time signals with two

essential arrow combinators:

iPre :: a → SF a a

integral :: a → SF a a

Both fit the type of init combinator of CCA.
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Extending CCA for Yampa Arrows

Yampa models both discrete-time and continuous-time signals with two

essential arrow combinators:

iPre :: a → SF a a

integral :: a → SF a a

Both fit the type of init combinator of CCA. Solution: extend CCA with

multi-sort inits!

The CCNF for a Yampa arrow is either arr f , or

loopD2 (i , j ) f = loop (arr f ≫ second (iPre i ⋆⋆⋆ integral j ))



36Animate Yampa Arrow with CCNF 2

Represent the CCNF for Yampa arrow as a generalized algebraic data

type (GADT):

data CCNF 2 a b where

CCNF 2 :: (VectorSpace DTime d ,Num d)⇒

((c, d), (a, (c, d))→ (b, (c, d)))→ CCNF 2 a b

Interact with the world with just CCNF 2, no more arrows!

reactimate :: IO (DTime, a)→ (b → IO ())→ CCNF 2 a b → IO ()

reactimate sense actuate (CCNF 2 ((i , j ), f )) = run i j

where run i j = do

(dt , x )← sense

let (y , (inew, j ′)) = f (x , (i , j ))

jnew = euler dt j j ′

actuate y

run inew jnew



37

Not All Yampa Arrows Are CCA

Yampa models dynamic systems with event switches:

switch :: SF a (b,Event c)→ (c → SF a b)→ SF a b

Or alternatively:

switch :: SF a (b,Event (SF a b))→ SF a b

But the normal form of CCA is static: both the state i and the function f

in a CCNF tuple are of a fixed structure.

Workaround: do not use CCNF tuple directly, but use switches on top of

normalized arrows.
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Related Work

◮ Single while loop (Harel 1980).

◮ Compilation of synchronous dataflow (Halbwachs et al. 1991,

Amagbagnon et al. 1995).

◮ Functional representation of streams (Caspi and Pouzet 1998).

◮ Functional stream derivatives (Rutten 2006).

◮ Stream Fusion (Coutts et al. 2007).

◮ FRP and arrow optimizations (Burchett et al. 2007, Nilsson 2005).
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Why We Love Arrows

CCA is a fine example demonstrating the power of abstraction through

arrows:

◮ High-level abstraction != sluggish performance.

◮ CCA extends generic arrows with domain knowledge. (ICFP2009)

◮ Use arrow for embedded DSLs and preserve sharing. (PADL2010)

◮ Arrows eliminate a certain form of space leaks in FRP. (ENTCS2007)
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Future Work

◮ Improve CCA implementation with a new meta-programming tool.

◮ Optimize CCNF code with a custom code inliner/generator.

◮ Extend CCA to handle concurrent I/O.
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Thank you!
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ODE Benchmarks (Speed Ratio)

Name Tagged Arrow CCA

Exponential 1 0.17 83.72

Sine wave 1 0.35 27.52

Damped oscillator 1 1.13 82.34

Lorenz attractor 1 3.55 159.54

◮ Tagged version gets slower as program gets more complex.

◮ Arrow version still has some overhead.

◮ CCA version generates very efficient code in a tight loop.
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Sound Sythesis Example

++ !x – x3

* feedbk1

lowpass
Embouchure delay

delayt (1/fqc/2)

emb

Flute bore delay
delayt (1/fqc)

bore

sinA
5

* 0.1

!

x

rand
1

flow

lineSeg

env1

lineSeg

envibr

+

* amp

* feedbk2

vibr * breath

sum1 out

lineSeg

env2

returnA

flute

Block diagram of Parry Cook’s Flute generator
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flute0 dur amp fqc press breath =

let en1 = arr $ lineSeg [0, 1.1 ∗ press, press, press, 0] [0.06, 0.2, dur − 0.16, 0.02]

en2 = arr $ lineSeg [0, 1, 1, 0] [0.01, dur − 0.02, 0.01]

enibr = arr $ lineSeg [0, 0, 1, 1] [0.5, 0.5, dur − 1]

emb = delayt (mkBuf 2 n) n

bore = delayt (mkBuf 1 (n ∗ 2)) (n ∗ 2)

n = truncate (1 / fqc / 2 ∗ fromIntegral sr)

in proc → do

rec tm ← timeA −≺ ()

env1 ← en1 −≺ tm

env2 ← en2 −≺ tm

envibr ← enibr −≺ tm

sin5 ← sineA 5 −≺ ()

rand ← arr rand f −≺ ()

let vibr = sin5 ∗ envibr ∗ 0.1

flow = rand ∗ env1

sum1 = breath ∗ flow + env1 + vibr

flute ← bore −≺ out

x ← emb −≺ sum1 + flute ∗ 0.4

out ← lowpassA 0.27−≺ x − x ∗ x ∗ x + flute ∗ 0.4

returnA−≺ out ∗ amp ∗ env2



45loop (arr (λ( , out)→ ((), out))≫

(first timeA≫ arr (λ(tm, out)→ (tm, (out, tm))))≫

(first en1 ≫ arr (λ(env1 , (out, tm))→ (tm, (env1 , out, tm))))≫

(first en2 ≫

arr (λ(env2 , (env1 , out, tm))→ (tm, (env1 , env2 , out))))≫

(first enibr ≫

arr (λ(envibr, (env1 , env2 , out))→ ((), (env1 , env2 , envibr, out))))≫

(first (sineA 5)≫

arr (λ(sin5 , (env1 , env2 , envibr, out))→

((), (env1 , env2 , envibr, out, sin5))))≫

(first (arr rand f )≫

arr (λ(rand, (env1 , env2 , envibr, out, sin5))→

let vibr = sin5 ∗ envibr ∗ 0.1

flow = rand ∗ env1

sum1 = breath ∗ flow + env1 + vibr

in (out, (env2 , sum1 ))))≫

(first bore ≫

arr (λ(flute, (env2 , sum1))→ ((flute, sum1 ), (env2 , flute))))≫

(first (arr (λ(flute, sum1 )→ sum1 + flute ∗ 0.4)≫ emb)≫

arr (λ(x , (env2 , flute))→ ((flute, x), env2)))≫

(first (arr (λ(flute, x)→ x − x ∗ x ∗ x + flute ∗ 0.4)≫

lowpassA 0.27)

≫ arr (λ(out, env2)→ ((env2 , out), out))))

≫ arr (λ(env2 , out)→ out ∗ amp ∗ env2)



46fluteOpt dur amp fqc press breath =

let env1 = upSample f (lineSeg am1 du1) 20

env2 = upSample f (lineSeg am2 du2) 20

env3 = upSample f (lineSeg am3 du3) 20

omh = 2 ∗ pi / (fromIntegral sr) ∗ 5

c = 2 ∗ cos omh

i = sin omh

dt = 1 / fromIntegral sr

sr = 44100

buf100 = mkArr 100

buf50 = mkArr 50

am1 = [0, 1.1 ∗ press, press, press, 0]

du1 = [0.06, 0.2, dur − 0.16, 0.02]

am2 = [0, 1, 1, 0]

du2 = [0.01, dur − 0.02, 0.01]

am3 = [0, 0, 1, 1]

du3 = [0.5, 0.5, dur − 1]

in loopD ((0, ((0, 0), 0)), (((((buf100), 0), 0), ((0), (((buf50), 0), 0))), (((0, i), (0, ((0, 0), 0))), ((0, ((0, 0), 0)), (0, ((0, 0), 0))))))

(λ((((( a, f ), e), d), c), (( b, ( h, i)), ((( g, l), ( k, ( m, n))), ((( j , q), ( p, ( r, s))), (( o, ( u, v)), ( t, ( w, x))))))) →

let randf = rand f f

(env1vu1, env1vu2) = env1 ( v, u)

(env1xw1, env1xw2) = env1 ( x, w)

(env3sr1, env3sr2) = env3 ( s, r)

(env2ih1, env2ih2) = env2 ( i, h)

d50nm = ((delay f 50) ( n, m))

d100lg = ((delay f 100) ( l, g))

foo = k + 0.27 ∗ (((−) ((+((polyx) (fstU d50nm))) baz)) k)

bar = (((+) (negate j)) ((c∗) q))

baz = (((+((+((∗breath) ((∗env1xw1) randf ))) env1vu1)) ((∗((∗0.1) env3sr1)) bar))) + (fstU d100lg ∗ 0.4)

in (((∗((∗amp) foo)) env2ih1), ((( b + dt), (env2ih2, b)), ((((sndU d100lg), foo), (foo, ((sndU d50nm), baz))),

((( q, bar), (( p + dt), (env3sr2, p))), ((( o + dt), (env1vu2, o)), (( t + dt), (env1xw2, t))))))))
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