
The Theory and Practice of
Causal Commutative Arrows

Hai (Paul) Liu

Advisor: Paul Hudak

Computer Science Department

Yale University

October 2010

1
Contributions

1. Formalization of Causal Commutative Arrows (CCA):

◮ Definition of CCA and its laws.

◮ Definition of a CCA language that is strongly normalizing.

◮ Proof of the soundness and termination of CCA normalization.

2. Implementation of CCA normalization/optimization:

◮ Compile-time normalization through meta-programming.

◮ Run-time performance improvement by orders of magnitude.

3. Applications of CCA:

◮ Synchronous Dataflow

• relating CCA normal form to an operational semantics.

◮ Ordinary Differential Equations (ODE)

• designing embedded DSLs, solving space leaks.

◮ Functional Reactive Programming (FRP)

• solving space leaks, extending CCA for hybrid modeling.

1
Contributions

1. Formalization of Causal Commutative Arrows (CCA):

◮ Definition of CCA and its laws.

◮ Definition of a CCA language that is strongly normalizing.

◮ Proof of the soundness and termination of CCA normalization.

2. Implementation of CCA normalization/optimization:

◮ Compile-time normalization through meta-programming.

◮ Run-time performance improvement by orders of magnitude.

3. Applications of CCA:

◮ Synchronous Dataflow

• relating CCA normal form to an operational semantics.

◮ Ordinary Differential Equations (ODE)

• designing embedded DSLs, solving space leaks.

◮ Functional Reactive Programming (FRP)

• solving space leaks, extending CCA for hybrid modeling.

2

Motivation

What is a good abstraction for Functional Reactive Program-

ming (FRP)?

2-a

Motivation

What is a good abstraction for Functional Reactive Program-

ming (FRP)?

What is a good abstraction?

2-b

Motivation

What is a good abstraction for Functional Reactive Program-

ming (FRP)?

What is a good abstraction?

◮ Abstract, high-level, more focus, less detail.

◮ General enough to express interesting programs.

◮ Specific enough to make use of domain knowledge.

2-c

Motivation

What is a good abstraction for Functional Reactive Program-

ming (FRP)?

What is a good abstraction?

◮ Abstract, high-level, more focus, less detail.

◮ General enough to express interesting programs.

◮ Specific enough to make use of domain knowledge.

What is FRP?

3

Part I: FRP

4

Functional Reactive Programming

FRP is a paradigm for programming time based hybrid systems, with

applications in graphics, animation, robotics, GUI, vision, etc.

FRP belongs to a larger family of synchronous dataflow languages.

4-a

Functional Reactive Programming

FRP is a paradigm for programming time based hybrid systems, with

applications in graphics, animation, robotics, GUI, vision, etc.

FRP belongs to a larger family of synchronous dataflow languages.

◮ Dataflow: data flow (along edges) between instructions (nodes).

◮ Synchronous: computation in each cycle is instantaneous.

◮ Hybrid: FRP models both continuous and discrete components.

4-b

Functional Reactive Programming

FRP is a paradigm for programming time based hybrid systems, with

applications in graphics, animation, robotics, GUI, vision, etc.

FRP belongs to a larger family of synchronous dataflow languages.

◮ Dataflow: data flow (along edges) between instructions (nodes).

◮ Synchronous: computation in each cycle is instantaneous.

◮ Hybrid: FRP models both continuous and discrete components.

How do we program such systems?

5

First-class Signals

Represent time changing quantities as an abstract data type:

Signal a ≈ Time → a

Example: a robot simulator. Its robots have a differential drive.

6Example: Robot Simulator

The equations governing the x position of a differential drive robot:

x(t) =
1

2

∫ t

0

(vr(t) + vl(t)) cos(θ(t))dt

θ(t) =
1

l

∫ t

0

(vr(t)− vl(t))dt

The corresponding FRP program: (Note the lack of explicit time)

x = (1 / 2) ∗ integral ((vr + vl) ∗ cos θ)

θ = (1 / l) ∗ integral (vr − vl)

Domain specific operators:

(+) :: Signal a → Signal a → Signal a

(∗) :: Signal a → Signal a → Signal a

integral :: Signal a → Signal a

...

7

First-class Signals: Good or Bad?

Good:

◮ Conceptually simple and concise.

◮ Easy to program with, no clutter.

◮ The basis for a large number of FRP implementations.

7-a

First-class Signals: Good or Bad?

Good:

◮ Conceptually simple and concise.

◮ Easy to program with, no clutter.

◮ The basis for a large number of FRP implementations.

Bad:

◮ Higher-order signals Signal (Event (Signal a)) are ambiguous.

◮ Time and space leak: program slows down and consumes memory

at an unexpected rate.

8

Improving the Abstraction with Signal Functions

Instead of first-class signals, use first-class signal functions:

SF a b ≈ Signal a → Signal b

Yampa is a FRP language that models signal functions using

arrows.

9Signal Functions are Arrows

Arrows (Hughes 2000) are a generalization of monads. In Haskell:

class Arrow a where

arr :: (b → c)→ a b c

(≫) :: a b c → a c d → a b d

first :: a b c → a (b, d) (c, d)

Support both sequential and parallel composition.

second :: (Arrow a)⇒ a b c → a (d , b) (d , c)

second f = arr swap ≫ first f ≫ arr swap

where swap (a, b) = (b, a)

(⋆⋆⋆) :: (Arrow a)⇒ a b c → a b′ c′ → a (b, b′) (c, c′)

f ⋆⋆⋆ g = first f ≫ second g

(&&&) :: (Arrow a)⇒ a b c → a b c′ → a b (c, c′)

f &&&g = arr (λx → (x , x))≫ (f ⋆⋆⋆ g)

10

Picturing an Arrow

(a) arr f (b) f ≫ g (c) first f

(d) f ⋆⋆⋆ g (e) loop f

To model recursion, Paterson (2001) introduces ArrowLoop:

class Arrow a ⇒ ArrowLoop a where

loop :: a (b, d) (c, d)→ a b c

11

Robot Simulator Revisit

xSF = (((vrSF&&&vlSF)≫ arr (uncurry (+)))&&&(thetaSF ≫ arr cos))

≫ arr (uncurry (∗))≫ integral ≫ arr (/2)

11-a

Robot Simulator Revisit

&&&

xSF = (((vrSF&&&vlSF)≫ arr (uncurry (+)))&&&(thetaSF ≫ arr cos))

≫ arr (uncurry (∗))≫ integral ≫ arr (/2)

11-b

Robot Simulator Revisit

&&&

≫

xSF = (((vrSF&&&vlSF)≫ arr (uncurry (+)))&&&(thetaSF ≫ arr cos))

≫ arr (uncurry (∗))≫ integral ≫ arr (/2)

11-c

Robot Simulator Revisit

&&&

≫

≫

xSF = (((vrSF&&&vlSF)≫ arr (uncurry (+)))&&&(thetaSF ≫ arr cos))

≫ arr (uncurry (∗))≫ integral ≫ arr (/2)

11-d

Robot Simulator Revisit

&&&

≫

≫

&&&

xSF = (((vrSF&&&vlSF)≫ arr (uncurry (+)))&&&(thetaSF ≫ arr cos))

≫ arr (uncurry (∗))≫ integral ≫ arr (/2)

11-e

Robot Simulator Revisit

&&&

≫

≫

&&& ≫

xSF = (((vrSF&&&vlSF)≫ arr (uncurry (+)))&&&(thetaSF ≫ arr cos))

≫ arr (uncurry (∗))≫ integral ≫ arr (/2)

11-f

Robot Simulator Revisit

&&&

≫

≫

&&& ≫ ≫

xSF = (((vrSF&&&vlSF)≫ arr (uncurry (+)))&&&(thetaSF ≫ arr cos))

≫ arr (uncurry (∗))≫ integral ≫ arr (/2)

11-g

Robot Simulator Revisit

&&&

≫

≫

&&& ≫ ≫ ≫

xSF = (((vrSF&&&vlSF)≫ arr (uncurry (+)))&&&(thetaSF ≫ arr cos))

≫ arr (uncurry (∗))≫ integral ≫ arr (/2)

12Robot Simulator in Arrow Syntax

xSF = proc inp → do

vr ← vrSF −≺ inp

vl ← vlSF −≺ inp

θ ← thetaSF−≺ inp

i ← integral −≺ (vr + vl) ∗ cos θ

returnA−≺ (i / 2)

13

Modeling Discrete Events

Events are instantaneous and have no duration.

data Event a = Event a | NoEvent

Example: coerce from an discrete-time event stream to

continuous-time signal by “holding” a previous event value.

hold :: a → SF (Event a) a

14

Infinitesimal Delay with iPre

As a more primitive operator than hold , iPre puts an infinites-

imal delay over the input signal, and initializes it with a new

value.

iPre :: a → SF a a

We can implement hold using iPre:

hold i = proc e → do

rec y ← iPre i−≺ z

let z = case e of Event x → x

NoEvent → y

returnA−≺ z

15

What’s Good About Using Arrows in FRP

◮ Highly abstract, and yet allow domain specific extensions.

◮ Like monads, they are composable and can be stateful.

◮ Modular: both input and output are explicit.

◮ Higher-order signal function SF a (b,Event (SF a b)) as

event switch.

◮ Formal properties expressed as laws.

16

Arrow Laws

left identity arr id ≫ f = f

right identity f ≫ arr id = f

associativity (f ≫ g)≫ h = f ≫ (g ≫ h)

composition arr (g . f) = arr f ≫ arr g

extension first (arr f) = arr (f × id)

functor first (f ≫ g) = first f ≫ first g

exchange first f ≫ arr (id × g) = arr (id × g)≫ first f

unit first f ≫ arr fst = arr fst ≫ f

association first (first f)≫ arr assoc = arr assoc ≫ first f

where assoc ((a, b), c) = (a, (b, c))

17

Arrow Loop Laws

left tightening loop (first h ≫ f) = h ≫ loop f

right tightening loop (f ≫ first h) = loop f ≫ h

sliding loop (f ≫ arr (id ∗ k)) = loop (arr (id × k)≫ f)

vanishing loop (loop f) = loop (arr assoc−1
≫ f ≫ arr assoc)

superposing second (loop f) = loop (arr assoc≫ second f ≫ arr assoc−1)

extension loop (arr f) = arr (trace f)

where trace f b = let (c, d) = f (b, d) in c

18

FRP as a Domain Specific Language

What makes a good abstraction for FRP?

18-a

FRP as a Domain Specific Language

What makes a good abstraction for FRP?

Signals?

18-b

FRP as a Domain Specific Language

What makes a good abstraction for FRP?

Signals? flexible, but ... not enough discipline.

18-c

FRP as a Domain Specific Language

What makes a good abstraction for FRP?

Signals? flexible, but ... not enough discipline.

Arrows?

18-d

FRP as a Domain Specific Language

What makes a good abstraction for FRP?

Signals? flexible, but ... not enough discipline.

Arrows? Disciplined, but ... not specific enough.

18-e

FRP as a Domain Specific Language

What makes a good abstraction for FRP?

Signals? flexible, but ... not enough discipline.

Arrows? Disciplined, but ... not specific enough.

What is domain specific about FRP?

18-f

FRP as a Domain Specific Language

What makes a good abstraction for FRP?

Signals? flexible, but ... not enough discipline.

Arrows? Disciplined, but ... not specific enough.

What is domain specific about FRP? Causality.

(Causal: current output only depends on current and previous inputs.)

18-g

FRP as a Domain Specific Language

What makes a good abstraction for FRP?

Signals? flexible, but ... not enough discipline.

Arrows? Disciplined, but ... not specific enough.

What is domain specific about FRP? Causality.

(Causal: current output only depends on current and previous inputs.)

Can we refine the arrow abstraction to capture causality?

19

Part II. CCA

20

Causal Commutative Arrows (CCA)

Introduce a new operator init :

class ArrowLoop a ⇒ ArrowInit a where

init :: b → a b b

and two additional laws:

commutativity first f ≫ second g = second g ≫ first f

product init i ⋆⋆⋆ init j = init (i , j)

and still remain abstract!

21

What’s Good about CCA

CCA provides a core set of operators for dataflow computa-

tions.

◮ The init operator does not talk about time, and the

product law puts little restriction over its actual semantics.

◮ The commutativity law states an important non-interference

property so that side effects can only be local.

21-a

What’s Good about CCA

CCA provides a core set of operators for dataflow computa-

tions.

◮ The init operator does not talk about time, and the

product law puts little restriction over its actual semantics.

◮ The commutativity law states an important non-interference

property so that side effects can only be local.

Quiz: why not make this a law?

init i ≫ arr f = arr f ≫ init (f i)

22

The CCA Language: Syntax

Variables V ::= x | y | z | ...

Types A,B ,C ::= 1 | M × N | A→ B | A B

Expressions M ,N ::= () | V | (M ,N) | fst M | snd M |

λV .M | M N | trace M

Programs P ,Q ::= arr M | P ≫ Q | first P | loop P | init M

Environment Γ ::= x0 : A0, ..., xn : An

◮ Typed lambda calculus extended with unit, product, arrow and trace.

◮ Instead of type classes, use A B to denote arrow type.

◮ Programs and expressions are separated on purpose, so that pro-

grams are only finite compositions of arrow combinators.

23
The CCA Language: Types

(UNIT) Γ ⊢ () : 1 (VAR)
x : A ∈ Γ

Γ ⊢ x : A
(TRACE)

Γ ⊢ M : A × C → B × C

Γ ⊢ trace M : A → B

(ABS)
Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A → B
(APP)

Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ M N : B

(PAIR)
Γ ⊢ M : A Γ ⊢ N : B

Γ ⊢ (M, N) : A × B
(FST)

Γ ⊢ M : A × B

Γ ⊢ fst M : A
(SND)

Γ ⊢ M : A × B

Γ ⊢ snd M : B

(ARR)
⊢ M : A → B

⊢ arr M : A B
(SEQ)

⊢ P : A B ⊢ Q : B C

⊢ P ≫Q : A C

(FIRST)
⊢ P : A B

⊢ first P : A × C B × C
(LOOP)

⊢ P : A × C B × C

⊢ loop P : A B

(INIT)
⊢ M : A

⊢ init M : A A

24

Causal Commutative Normal Form (CCNF)

(f) Original (g) Normalized

Theorem (CCNF) For all well typed CCA program p : A B, there exists

a normal form pnorm , called the Causal Commutative Normal Form,

which is either of the form arr f , or loopD i f for some i and f , such that

pnorm : A B, and p ⇓ pnorm . In unsugared form, the second form is

equivalent to

loopD i f = loop (arr f ≫ second (init i))

25

Normalization Explained

◮ Based on arrow laws, but directed.

◮ The two new laws, commutativity and product, are essential.

◮ Best illustrated by pictures...

25-a

Re-order Parallel Pure and Stateful Arrows

Related law: exchange (a special case of commutativity).

25-b

Re-order Sequential Pure and Stateful Arrows

Related laws: tightening, sliding, and definition of second.

25-c

Change Sequential to Parallel

Related laws: product, tightening, sliding, and definition of second.

25-d

Move Sequential into Loop

Related law: tightening.

25-e

Move Parallel into Loop

Related laws: superposing, and definition of second.

25-f

Fuse Nested Loops

Related laws: commutativity, product, tightening, and vanishing.

26

Part III. Applications

27Synchronous Dataflow

Programs written in a stream based dataflow language (Lucid):

ones = 1 ‘fby ‘ ones fibs = let f = 0 ‘fby‘ g

sum x = x + 0 ‘fby‘ sum x g = 1 ‘fby ‘ (f + g)

nats = sum ones in f

Compare to programs written in arrows:

ones = arr (λ → 1) fibs = proc → do

sum = proc x → do rec f ← init 0−≺ g

rec s ← init 0−≺ s ′ g ← init 1−≺ (f + g)

let s ′ = s + x returnA−≺ f

returnA−≺ s ′

nats = ones ≫ sum

Stream functions over discrete streams are arrows. We instantiate CCA

by assigning init the meaning of a unit delay, just like ‘fby ‘.

28

Synchronous Dataflow: Normalization Example

Same fibs program written in arrow combinators:

fibs = loop (arr snd ≫ loop (arr (uncurry (+))≫ init 1≫ arr dup)≫

init 0≫ arr dup)

where dup x = (x , x)

Its normal form:

ccnf fibs = loopD (0, 1) (λ(, (x , y))→ (x , (y , x + y)))

(a) Original (b) Normalized

29

CCNF Tuple and Operational Semantics

We call the pair (i , f) a CCNF tuple for a CCNF in the form

loopD i f .

runccnf :: (d , (b, d)→ (c, d))→ [b]→ [c]

runccnf (i , f) = g i

where g i (x : xs) = let (y , i ′) = f (x , i) in y : g i ′ xs

runccnf implements an operational semantics for causal

stream functions that is also known as a Mealy machine, a

form of automata.

By using CCNF tuples directly, we avoid all arrow structures!

30

Dataflow Benchmarks (Speed Ratio)

Name GHC 1 arrowp2 CCNF 3 CCNF Tuple4

sine 1.0 2.40 17.05 470.56

fibonacci 1.0 1.87 16.48 123.15

factorial 1.0 3.09 15.84 22.62

bounded counter 1.0 3.22 44.48 98.91

◮ Same arrow source programs written in arrow syntax.

◮ Same arrow implementation in Haskell.

◮ Only difference is syntactic:

1. Translated to combinators by GHC’s built-in arrow compiler.

2. Translated to combinators by Paterson’s arrowp preprocessor.

3. Arrow combinator after CCA normalization.

4. CCNF tuple after CCA normalization.

31

Representing Autonomous ODE

An ordinary differential equation (ODE) of order n is of the

form:

f (n) = F (t, f, f ′, . . . , f (n−1))

for an unknown function f(t), with its nth derivative described

by f (n), where f ∈ R→ R and t ∈ R.

An initial value problem of a first order autonomous ODE is of

the form:

f ′ = F (f) s.t. f(t0) = f0

The given pair (t0, f0) ∈ R× R is called the initial condition.

32DSL for ODE Using Tower of Derivatives

Function Mathematics Haskell

Sine wave y′′ = −y y = integral y0 y ′

y ′ = integral y1 (−y)

Damped oscillator y′′ = −cy′ − y y = integral y0 y ′

y ′ = integral y1 (−c ∗ y ′ − y)

Lorenz attractor x′ = σ(y − x) x = integral x0 (σ ∗ (y − x))

y′ = x(ρ− z)− y y = integral y0 (x ∗ (ρ− z)− y)

z′ = xy − βz z = integral z0 (x ∗ y − β ∗ z)

ODE represented as a tower-of-derivatives (Karczmarczuk 1998):

data D a = D {val :: a, der :: D a }

(+) :: D a → D a → D a

(∗) :: D a → D a → D a

integral :: a → D a → D a

integral v d = D v d

33

DSL for ODE Using Arrows

Sine wave y′′ = −y proc ()→ do

rec y ← integral y0−≺ y ′

y ′ ← integral y1−≺ −y

returnA−≺ y

Damped oscillator y′′ = −cy′ − y proc ()→ do

rec y ← integral y0−≺ y ′

y ′ ← integral y1−≺ −c ∗ y ′ − y

returnA−≺ y

Lorenz attractor x′ = σ(y − x) proc ()→ do

y′ = x(ρ− z)− y rec x ← integral x0−≺ σ ∗ (y − x)

z′ = xy − βz y ← integral y0−≺ x ∗ (ρ− z)− y

z ← integral z0−≺ x ∗ y − β ∗ z

returnA−≺ (x , y , z)

34

ODE Arrows are CCA

The integral function is indeed just the init operator in CCA.

(c) Original (d) Normalized

After normalization to an CCNF tuple (i , f) :: (s, (a, s)→ (b, s))

◮ The state i is a nested tuple that represents a vector of initial values.

◮ The pure function f computes the value of derivatives.

ODEs can be numerically solved by using just CCNF tuples!

35

Extending CCA for Yampa Arrows

Yampa models both discrete-time and continuous-time signals with two

essential arrow combinators:

iPre :: a → SF a a

integral :: a → SF a a

Both fit the type of init combinator of CCA.

35-a

Extending CCA for Yampa Arrows

Yampa models both discrete-time and continuous-time signals with two

essential arrow combinators:

iPre :: a → SF a a

integral :: a → SF a a

Both fit the type of init combinator of CCA. Solution: extend CCA with

multi-sort inits!

The CCNF for a Yampa arrow is either arr f , or

loopD2 (i , j) f = loop (arr f ≫ second (iPre i ⋆⋆⋆ integral j))

36Animate Yampa Arrow with CCNF 2

Represent the CCNF for Yampa arrow as a generalized algebraic data

type (GADT):

data CCNF 2 a b where

CCNF 2 :: (VectorSpace DTime d ,Num d)⇒

((c, d), (a, (c, d))→ (b, (c, d)))→ CCNF 2 a b

Interact with the world with just CCNF 2, no more arrows!

reactimate :: IO (DTime, a)→ (b → IO ())→ CCNF 2 a b → IO ()

reactimate sense actuate (CCNF 2 ((i , j), f)) = run i j

where run i j = do

(dt , x)← sense

let (y , (inew, j ′)) = f (x , (i , j))

jnew = euler dt j j ′

actuate y

run inew jnew

37

Not All Yampa Arrows Are CCA

Yampa models dynamic systems with event switches:

switch :: SF a (b,Event c)→ (c → SF a b)→ SF a b

Or alternatively:

switch :: SF a (b,Event (SF a b))→ SF a b

But the normal form of CCA is static: both the state i and the function f

in a CCNF tuple are of a fixed structure.

Workaround: do not use CCNF tuple directly, but use switches on top of

normalized arrows.

38

Related Work

◮ Single while loop (Harel 1980).

◮ Compilation of synchronous dataflow (Halbwachs et al. 1991,

Amagbagnon et al. 1995).

◮ Functional representation of streams (Caspi and Pouzet 1998).

◮ Functional stream derivatives (Rutten 2006).

◮ Stream Fusion (Coutts et al. 2007).

◮ FRP and arrow optimizations (Burchett et al. 2007, Nilsson 2005).

39

Why We Love Arrows

CCA is a fine example demonstrating the power of abstraction through

arrows:

◮ High-level abstraction != sluggish performance.

◮ CCA extends generic arrows with domain knowledge. (ICFP2009)

◮ Use arrow for embedded DSLs and preserve sharing. (PADL2010)

◮ Arrows eliminate a certain form of space leaks in FRP. (ENTCS2007)

40

Future Work

◮ Improve CCA implementation with a new meta-programming tool.

◮ Optimize CCNF code with a custom code inliner/generator.

◮ Extend CCA to handle concurrent I/O.

41

Thank you!

42

ODE Benchmarks (Speed Ratio)

Name Tagged Arrow CCA

Exponential 1 0.17 83.72

Sine wave 1 0.35 27.52

Damped oscillator 1 1.13 82.34

Lorenz attractor 1 3.55 159.54

◮ Tagged version gets slower as program gets more complex.

◮ Arrow version still has some overhead.

◮ CCA version generates very efficient code in a tight loop.

43

Sound Sythesis Example

++ !x – x3

* feedbk1

lowpass
Embouchure delay

delayt (1/fqc/2)

emb

Flute bore delay
delayt (1/fqc)

bore

sinA
5

* 0.1

!

x

rand
1

flow

lineSeg

env1

lineSeg

envibr

+

* amp

* feedbk2

vibr * breath

sum1 out

lineSeg

env2

returnA

flute

Block diagram of Parry Cook’s Flute generator

44

flute0 dur amp fqc press breath =

let en1 = arr $ lineSeg [0, 1.1 ∗ press, press, press, 0] [0.06, 0.2, dur − 0.16, 0.02]

en2 = arr $ lineSeg [0, 1, 1, 0] [0.01, dur − 0.02, 0.01]

enibr = arr $ lineSeg [0, 0, 1, 1] [0.5, 0.5, dur − 1]

emb = delayt (mkBuf 2 n) n

bore = delayt (mkBuf 1 (n ∗ 2)) (n ∗ 2)

n = truncate (1 / fqc / 2 ∗ fromIntegral sr)

in proc → do

rec tm ← timeA −≺ ()

env1 ← en1 −≺ tm

env2 ← en2 −≺ tm

envibr ← enibr −≺ tm

sin5 ← sineA 5 −≺ ()

rand ← arr rand f −≺ ()

let vibr = sin5 ∗ envibr ∗ 0.1

flow = rand ∗ env1

sum1 = breath ∗ flow + env1 + vibr

flute ← bore −≺ out

x ← emb −≺ sum1 + flute ∗ 0.4

out ← lowpassA 0.27−≺ x − x ∗ x ∗ x + flute ∗ 0.4

returnA−≺ out ∗ amp ∗ env2

45loop (arr (λ(, out)→ ((), out))≫

(first timeA≫ arr (λ(tm, out)→ (tm, (out, tm))))≫

(first en1 ≫ arr (λ(env1 , (out, tm))→ (tm, (env1 , out, tm))))≫

(first en2 ≫

arr (λ(env2 , (env1 , out, tm))→ (tm, (env1 , env2 , out))))≫

(first enibr ≫

arr (λ(envibr, (env1 , env2 , out))→ ((), (env1 , env2 , envibr, out))))≫

(first (sineA 5)≫

arr (λ(sin5 , (env1 , env2 , envibr, out))→

((), (env1 , env2 , envibr, out, sin5))))≫

(first (arr rand f)≫

arr (λ(rand, (env1 , env2 , envibr, out, sin5))→

let vibr = sin5 ∗ envibr ∗ 0.1

flow = rand ∗ env1

sum1 = breath ∗ flow + env1 + vibr

in (out, (env2 , sum1))))≫

(first bore ≫

arr (λ(flute, (env2 , sum1))→ ((flute, sum1), (env2 , flute))))≫

(first (arr (λ(flute, sum1)→ sum1 + flute ∗ 0.4)≫ emb)≫

arr (λ(x , (env2 , flute))→ ((flute, x), env2)))≫

(first (arr (λ(flute, x)→ x − x ∗ x ∗ x + flute ∗ 0.4)≫

lowpassA 0.27)

≫ arr (λ(out, env2)→ ((env2 , out), out))))

≫ arr (λ(env2 , out)→ out ∗ amp ∗ env2)

46fluteOpt dur amp fqc press breath =

let env1 = upSample f (lineSeg am1 du1) 20

env2 = upSample f (lineSeg am2 du2) 20

env3 = upSample f (lineSeg am3 du3) 20

omh = 2 ∗ pi / (fromIntegral sr) ∗ 5

c = 2 ∗ cos omh

i = sin omh

dt = 1 / fromIntegral sr

sr = 44100

buf100 = mkArr 100

buf50 = mkArr 50

am1 = [0, 1.1 ∗ press, press, press, 0]

du1 = [0.06, 0.2, dur − 0.16, 0.02]

am2 = [0, 1, 1, 0]

du2 = [0.01, dur − 0.02, 0.01]

am3 = [0, 0, 1, 1]

du3 = [0.5, 0.5, dur − 1]

in loopD ((0, ((0, 0), 0)), (((((buf100), 0), 0), ((0), (((buf50), 0), 0))), (((0, i), (0, ((0, 0), 0))), ((0, ((0, 0), 0)), (0, ((0, 0), 0))))))

(λ(((((a, f), e), d), c), ((b, (h, i)), (((g, l), (k, (m, n))), (((j , q), (p, (r, s))), ((o, (u, v)), (t, (w, x))))))) →

let randf = rand f f

(env1vu1, env1vu2) = env1 (v, u)

(env1xw1, env1xw2) = env1 (x, w)

(env3sr1, env3sr2) = env3 (s, r)

(env2ih1, env2ih2) = env2 (i, h)

d50nm = ((delay f 50) (n, m))

d100lg = ((delay f 100) (l, g))

foo = k + 0.27 ∗ (((−) ((+((polyx) (fstU d50nm))) baz)) k)

bar = (((+) (negate j)) ((c∗) q))

baz = (((+((+((∗breath) ((∗env1xw1) randf))) env1vu1)) ((∗((∗0.1) env3sr1)) bar))) + (fstU d100lg ∗ 0.4)

in (((∗((∗amp) foo)) env2ih1), (((b + dt), (env2ih2, b)), ((((sndU d100lg), foo), (foo, ((sndU d50nm), baz))),

(((q, bar), ((p + dt), (env3sr2, p))), (((o + dt), (env1vu2, o)), ((t + dt), (env1xw2, t))))))))

47

