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Arrows are a popular form of abstract computation. Being more general than

monads, they are more broadly applicable, and in particular are a good abstraction

for signal processing and dataflow computations. Most notably, arrows form the basis

for Yampa, a functional reactive programming (FRP) language embedded in Haskell.

Our primary interest is in better understanding the class of abstract computations

captured by Yampa. Unfortunately, arrows are not concrete enough to do this with

precision for the lack of a domain specific knowledge.

In this thesis, we present a more constrained class of arrows called causal commu-

tative arrows (CCA) that introduces an init operator to capture the causal nature of

arrow effects, as well as two additional laws. Our key contribution is the identification

of a normal form for CCA, and by defining a normalization procedure we have de-

veloped an optimization strategy that yields dramatic improvements in performance

over conventional implementations of arrows.

To study this abstract class of computation more concretely, we explore three

different and yet related applications of CCA, namely, synchronous dataflow, ordinary

differential equation, and functional reactive programming. For each application, we

develop an arrow based DSL that is an instance of CCA, and we show their significant

advantages at improving program’s run-time behavior, such as eliminating hideous

space leaks, and boosting performances by orders of magnitude.
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Chapter 1

Introduction

1.1 Background and Motivation

Domain Specific Languages (DSLs) are a novel approach to tackle domain specific

problems, with a focus on domain abstractions that bring expressiveness and pro-

ductivity. Their restricted semantics lend themselves to advanced optimization tech-

niques that are often not readily available in general purpose languages. The ability

to abstract over domain knowledges is a key criteria in designing DSLs, and very often

such designs are based upon formal models for their properties are well studied, and

programs can also benefit from techniques such as type analysis and formal reasoning.

Arrows introduced by Hughes [2000] are a popular form of such formalisms, and

they have enjoyed a wide range of applications, often as an embedded DSL, including

signal processing [Nilsson et al., 2002], graphical user interface [Courtney and Elliott,

2001], parsers and printers [Jansson and Jeuring, 1999], and so on. One notable

example of such applications is in the area of functional reactive programming, or
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FRP, which models hybrid reactive system in a high-level and declarative way. In

particular, arrows form the basis for a DSL called Yampa, which has been used in a

variety of applications, including robotics [Hudak et al., 2003, Peterson et al., 1999b,a],

sound synthesis [Giorgidze and Nilsson, 2008, Cheng and Hudak, 2008], animations

[Hudak et al., 2003], video games [Courtney et al., 2003, Cheong, 2005], bio-chemical

processes [Hudak et al., 2008], control systems [Oertel, 2006], and graphical user

interfaces [Courtney and Elliott, 2001, Courtney, 2004].

One of the key abstractions in conventional FRP languages is to use signals to

represent time-changing values:

Signal a ≈ Time → a

A signal can be viewed as a function from time to a value, and this simple but

concise abstraction gives rise to a rich semantics for programming reactive systems

with a functional language. Despite its conceptual elegance, signals are not without

problems. Semantics wise, there is an ambiguity in defining higher-order signals:

whether they shall keep changing along with time, or be frozen until the moment of

resumption. Implementation wise, there was a space leak problem, associated with

recursive signal definitions troubling early FRP implementations.

These problems motivated Yampa, also known as arrow-ized FRP or AFRP, where

instead of representing signals directly, we make a further abstraction with signal

functions:

SF a b ≈ Signal a→ Signal b

Signal functions can be viewed as a basic building block mapping one signal into

another, and we write programs by composing simpler signal functions together to
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form more complex ones. Arrows become an ideal abstract model for signal functions

by supplying a minimal set of combinators to support both sequential and parallel

compositions, as well as looping structures.

Programming at the signal function level is more restricted since we lose the ability

to manipulate signals directly. As a consequence of this kind of imposed disciplines, we

are no longer troubled by higher-order signals since they are not even representable

in Yampa. Instead, we now have higher-order signal functions, which play a key

role in modeling structural reactivity. Moreover, the space leak problem plaguing

conventional FRP implementations has simply ceased to exist in Yampa programs.

A common folklore is that since a representation of signals has to lug around their

entire history of values, they are prone to space leak problems. While there is a

certain degree of truth in this, the real problem is more subtle and requires careful

analysis.

A good DSL shall capture the essence of the given domain and provide the right

level of abstraction. Being a generic computation model, however, arrows must be ex-

tended by domain specific operators when applied to a particular problem domain. In

order to better understand the class of abstract computation represented by Yampa,

we develop a more constrained class of arrows called causal commutative arrows, or

CCAs, and study its theory and application in depth.

In particular, we notice that there are two essential properties of FRP not captured

by conventional arrows:

1. Parallel composition of signal functions are commutative since all side effects

are entirely local and do not interfere with one another, and yet the paral-
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lel composition of generic arrows presumes that the compositional order is of

importance.

2. FRP computations must be causal, i.e., computations shall only depend on

the past and current inputs, but not future ones. Usually we cannot avoid

mentioning time when we talk about causality, but time itself is hidden in the

abstraction of signal functions.

To generalize arrows that are commutative, we introduce a commutativity law. To

generalize causality, we introduce a new arrow combinator called init together with

a product law that describes its property. Arrows that are both commutative and

causal are called causal commutative arrows (CCA).

1.2 Dissertation Overview

In order to formalize CCA and its properties, we introduce a language for CCA,

which is basically a typed lambda calculus with arrow combinators added. A no-

table simplification in the CCA language setting it apart from the lambda calculus

is that there is no lambda or recursion at the arrow level, which effectively means all

arrow programs in this language are only compositions of a finite number of arrow

combinators. We then prove an important property of CCA, i.e., all CCA programs

can be transformed into a canonical representation that we call Causal Commutative

Normal Form, or CCNF. We prove that the normalization procedure is sound, based

on equational reasoning using only the CCA laws.

The discovery of a normal form for CCA is of importance both in theory and in
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practice. It has become common in the Haskell research community to characterize a

particular model of computation via a type class, its operators, and their associated

laws. But the soundness of the laws is not typically established with respect to a

formal semantics, and the usual notions of confluence, termination, normal form,

etc. are absent. We attempt here to address these concerns while still keeping the

computational model relatively abstract, thus giving a stronger characterization of

the model itself.

Our formalization of the CCA language is fairly abstract since it makes no mention

of either a denotational or an operational semantics. This is indeed desirable because

CCA by itself is only governed by the set of CCA laws, or in other words, an axiomatic

semantics. It also means CCA could be more broadly applicable than Yampa itself.

We further explore the applications of CCA in three main areas:

Synchronous dataflow Most FRP implementations, including Yampa, belong to

a larger family of synchronous dataflow languages. We look at simple languages

for discrete dataflow and compare the usual stream based DSL to an arrow

based one. We argue that the CCA normalization is an effective compile-time

transformation for the latter that improves its run-time performances. Further

more, we relate the CCNF of arrow programs to an operational semantics for

dataflow languages based on Mealy machines, a form of automata.

Ordinary Differential Equation We explore the DSL design space for ordinary

differential equations, ranging from a shallow embedding to a deep embedding,

and middle-grounds in between. A naive implementation based on the lazy

tower of derivatives [Karczmarczuk, 1998] is straightforward but has serious
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time and space leaks due to the loss of sharing when traversing cyclic and

infinite data structures. We argue that an arrow based solution can help to

capture both sharings and recursions and at the same time avoid space leaks.

We further identify this is an application of CCA besides dataflow, and improve

the run-time ODE performance by normalizing arrows at compile-time.

Functional Reactive Programming Finally, we come back to our motivating area

of FRP, and explore how arrows help to solve a similar and yet different space

leak problem than the ODE one. We also present a unified approach for CCA to

capture both the discrete and continuous time-changing aspects in Yampa, and

explore the limitation of CCA normalization in supporting dynamic structures.

Besides the main theme on CCAs, through out the chapters we also evangelize arrows

as a suitable computation model in the design and implementation of embedded DSLs.

The compositional structure of arrow programs maintains sharing of computation by

nature, and entails easy traversals and transformations.

1.3 Contributions

We summarize our contributions as follows:

1. We define a notion of commutative arrow by extending the conventional set of

arrow laws to include a commutativity law.

2. We define an ArrowInit type class with an init operator that captures a gener-

alized notion of computational causality and satisfies a product law.
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3. We define a restricted language for CCA, in which the above ideas are manifest.

For such arrows we establish:

(a) a normal form, and

(b) a normalization procedure.

We achieve this result with only the CCA laws, without referring to any concrete

semantics or implementation.

4. We define an optimization technique for CCA that yields substantial improve-

ments in performance over previous attempts to optimize arrow combinators

and arrow syntax.

5. We implement CCA normalization and optimization techniques in Haskell uti-

lizing Template Haskell as a means to seamlessly integrate with existing arrow

programs.

6. We demonstrate how arrows and CCAs can be successfully applied in three

applications including synchronous dataflow, ordinary differential equation, and

functional reactive programming. For each of the three applications, we show

that:

(a) an arrow based DSL effectively models computation in the target domain;

(b) the arrow is a CCA instance because it satisfies the commutativity law,

and implements a domain specific init operator satisfying the product law;

(c) there are practical benefits of using arrows and CCAs including the elimi-

nation of certain space leaks, and improved run-time performances through

8



CCA normalization.

7. We identify a space leak problem in both the DSLs for ODE and early FRP im-

plementations, trace its origin to the sharing of beta reductions in the standard

call-by-need evaluation, and show that arrow based DSLs can avoid the leak by

employing a finite data structure and a custom fixed-point operator.

1.4 Advice to the Reader

The remaining chapters are organized as follows. Chapter 2 gives a brief overview

of arrows and Yampa. The knowledgeable reader may prefer skipping directly to

Chapter 3 where we give a formal treatment of the CCA language and its properties

including normalization, and a discussion of possible extensions. We then take an in-

depth look at three applications of CCA: synchronous dataflow in Chapter 4, ordinary

differential equation in Chapter 5, and functional reactive programming in Chapter 6.

Finally we conclude and discuss future work in Chapter 7.

We assume the reader has a basic knowledge of functional programming and the

Haskell programming language, since most programs in this dissertation are written

in Haskell, and compiled with the Glasgow Haskell Compiler (GHC). Chapter 3 also

contains proofs of theorems, although the bulk of them are relegated to the Appendix.
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Chapter 2

Arrows and FRP

2.1 Arrows

Arrows [Hughes, 2000] are a generalization of monads that relax the stringent linearity

imposed by monads, while retaining a disciplined style of composition. Arrows have

enjoyed a wide range of applications, often as a domain-specific embedded language

(DSEL [Hudak, 1996, 1998]), including the many Yampa applications cited earlier, as

well as parsers and printers [Jansson and Jeuring, 1999], parallel computing [Huang

et al., 2007], and so on. Arrows also have a theoretical foundation in category theory,

where they are strongly related to (but not precisely the same as) Freyd categories

[Atkey, 2008, Power and Thielecke, 1999].

2.1.1 Conventional Arrows

Like monads, arrows capture a certain class of abstract computations, and offer a way

to structure programs. In Haskell this is achieved through the Arrow type class:
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class Arrow a where

arr :: (b → c)→ a b c

(≫) :: a b c → a c d → a b d

first :: a b c → a (b, d) (c, d)

The combinator arr lifts a function from b to c to a “pure” arrow computation from

b to c, namely a b c where a is the arrow type. The output of a pure arrow entirely

depends on the input (it is analogous to return in the Monad class). ≫ composes two

arrow computations by connecting the output of the first to the input of the second

(and is analogous to bind >>= in the Monad class). But in addition to composing

arrows linearly, it is desirable to compose them in parallel – i.e. to allow “branching”

and “merging” of inputs and outputs. There are several ways to do this, but by

simply defining the first combinator in the Arrow class, all other combinators can be

defined. first converts an arrow computation taking one input and one result, into an

arrow computation taking two inputs and two results. The original arrow is applied

to the first part of the input, and the result becomes the first part of the output. The

second part of the input is fed directly to the second part of the output.

Other combinators can be defined using these three primitives. For example, the

dual of first can be defined as:

second :: (Arrow a)⇒ a b c → a (d , b) (d , c)

second f = arr swap ≫ first f ≫ arr swap

where swap (a, b) = (b, a)

Parallel composition can be defined as a sequence of first and second:

11



left identity arr id ≫ f = f

right identity f ≫ arr id = f

associativity (f ≫ g) ≫ h = f ≫ (g ≫ h)

composition arr (g . f ) = arr f ≫ arr g

extension first (arr f ) = arr (f × id)

functor first (f ≫ g) = first f ≫ first g

exchange first f ≫ arr (id × g) = arr (id × g) ≫ first f

unit first f ≫ arr fst = arr fst ≫ f

association first (first f ) ≫ arr assoc = arr assoc ≫ first f

where assoc ((a, b), c) = (a, (b, c))

Figure 2.1: Conventional Arrow Laws

(⋆⋆⋆) :: (Arrow a)⇒ a b c → a b ′ c ′ → a (b, b ′) (c, c ′)

f ⋆⋆⋆ g = first f ≫ second g

A mere implementation of the arrow combinators, of course, does not make it an

arrow – the implementation must additionally satisfy a set of arrow laws, which are

shown in Figure 2.1.

2.1.2 Looping Arrows

To model recursion, we can introduce a loop combinator [Paterson, 2001]. For ex-

ample, many applications in signal processing would require feedback loops from the

output to the input. In Haskell this combinator is captured in the ArrowLoop class:
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left tightening loop (first h ≫ f ) = h ≫ loop f

right tightening loop (f ≫ first h) = loop f ≫ h

sliding loop (f ≫ arr (id × k)) = loop (arr (id × k) ≫ f )

vanishing loop (loop f ) = loop (arr assoc−1 ≫ f ≫ arr assoc)

superposing second (loop f ) = loop (arr assoc ≫ second f ≫ arr assoc−1)

extension loop (arr f ) = arr (trace f )

where trace f b = let (c, d) = f (b, d) in c

Figure 2.2: Arrow Loop Laws

class Arrow a ⇒ ArrowLoop a where

loop :: a (b, d) (c, d)→ a b c

Intuitively, the second output of the arrow inside loop is immediately fed back to its

second input, and thus becomes a form of recursion. A valid instance of this class

should satisfy the additional laws shown in Figure 2.2. This class and its associated

laws are related to the trace operator in [Street et al., 1996, Hasegawa, 1997], which

was generalized to arrows in [Paterson, 2001].

We find that arrows are best viewed pictorially, especially for applications such as

signal processing, where domain experts commonly draw signal flow diagrams. Figure

2.3 shows some of the basic combinators in this manner, including loop.

2.1.3 Arrow Notation

Arrow expressions we have seen so far maintain a point-free style that requires explicit

“plumbing” using arrow combinators, and may be obscure and inconvenient in some
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arr :: Arrow a ⇒ (b → c)→ a b c

(≫) :: Arrow a ⇒ a b c → a c d → a b d

first :: Arrow a ⇒ a b c → a (b, d) (c, d)

(⋆⋆⋆) :: Arrow a ⇒ a b c → a b ′ c ′ → a (b, b ′) (c, c ′)

loop :: Arrow a ⇒ a (b, d) (c, d)→ a b c

(a) arr f (b) f ≫ g (c) first f

(d) f ⋆⋆⋆ g (e) loop f

Figure 2.3: Commonly Used Arrow Combinators
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exp = ...

| proc pat → cmd

cmd = exp−≺ exp

| do {stmt ; ...; stmt ; cmd }

stmt = pat ← cmd

| cmd

| rec {stmt ; ...; stmt }

Figure 2.4: Grammar for Arrow Notations

cases. Paterson [2001] devises a set of arrow notation (also called arrow syntax ) that

help users to express arrows in a “point-ful” style with improved presentation, with

the grammar defined in Figure 2.4. Programs written in such special syntax can be

automatically translated by a pre-processor back to the combinator form. GHC in

fact has built-in support for arrow notation.

We omit the detail translation rules of arrow notation, and instead briefly explain

through the example of the parallel composition (⋆⋆⋆) that is re-written in arrow

notation as follows:

(⋆⋆⋆) :: Arrow a ⇒ a b c → a b ′ c ′ → a (b, b ′) (c, c ′)

f ⋆⋆⋆ g = proc (x , y)→ do

x ′ ← f−≺ x

y ′ ← g−≺ y

returnA−≺ (x ′, y ′)

returnA :: Arrow a ⇒ a b b
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returnA = arr (λx → x )

The proc keyword starts an arrow expression whose input is a pair (x , y), and whose

output is the output of the last command in the do-block. The do-block allows one

to use variable bindings as “points” to interconnect arrows, e.g., x ′ ← f−≺ x passes a

value x through an arrow f and names the result x ′. So the proc expression is really

just another way to express arrow compositions by naming the “points”, in contrast

to the point-free style.

2.2 Yampa: Arrow-ized FRP

As mentioned in Chapter 1, Yampa [Hudak et al., 2003] is a flavor of FRP that instead

of having time varying values (also called signals) as first-class objects, represents

signal functions, or signal transformers, as first-class. The compositional model of

Yampa is based on arrows, and hence we sometimes refer to Yampa or its variants as

Arrow-ized FRP.

2.2.1 Yampa Primitives

Yampa models both the continuous and discrete aspects of a hybrid reactive system.

The primary arrow type in Yampa is called SF , and it is declared as instances of the

Arrow and ArrowLoop classes (implementation details are omitted below):

data SF a b = ...

instance Arrow SF where ...

instance ArrowLoop SF where ...

16



As an example of continuous modeling, consider the program for a robot simulator

given by Hudak et al. [2003]:

xSF :: SF SimbotInput Distance

xSF = proc inp → do

vr ← vrSF −≺ inp

vl ← vlSF −≺ inp

θ ← thetaSF−≺ inp

i ← integral −≺ (vr + vl) ∗ cos θ

returnA−≺ i / 2

The above xSF models the computation of the x position of a differential drive robot

governed by the following mathematical equation:

x(t) =
1

2

∫ t

0

(vr(t) + vl(t))cos(θ(t))dt

Even for those not familiar with arrow syntax or Haskell, the close correspondence

between the mathematics and the Yampa program should be clear. As in most high-

level language designs, this is the primary motivation for developing a language such

as Yampa: reducing the gap between program and specification.

More importantly, we make two observations in the above Yampa definition for

xSF :

1. There is an explicit input inp to drive both the left and right velocities. This

is because the velocities are obtained from the input data gathered by sensors

(represented here as the data type SimbotInput), which is considered as an

external input to our program. Such kind of information or specification is
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entirely hidden in the math equation. The nature of arrows require us to state

the explicit mapping from inputs to outputs, and hence is a more disciplined

way of writing programs.

2. Time t itself is not mentioned anywhere in the program. In a similar manner to

conventional FRP programs, by not having to deal with time directly, we keep

signal functions abstract and hence allow more flexible implementations. The

primary effect in the above program is the integral arrow with the following

type (here slightly simplified):

integral :: Fractional a ⇒ a → SF a a

What integral does is to numerically integrate the incoming signal over time,

and the only argument it takes is an initial value. It basically transforms a

continuous-time signal to its numerical integral that is also continuous-time.

Besides transforming continuous signals, Yampa also supports discrete events. Events

differ from continuous values in their nature of occurrence: they are instantaneous

and have no duration. Events are represented by an Event type in Yampa, which is

isomorphic to the commonly used Maybe type in Haskell:

data Event a = Event a

| NoEvent

Individual events may carry a value, and a very common event operation is to tag

the event with a different value:

tag :: Event a → b → Event b
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Figure 2.5: Semantics of hold

Event ‘tag ‘ v = Event v

NoEvent ‘tag ‘ = NoEvent

We can coerce from a discrete-time event stream to continuous-time signal by “hold-

ing” a previous event value over the period of NoEvent until a new event occurs. We

illustrate the semantics of a hold function in Figure 2.5, and give its type below:

hold :: a → SF (Event a) a

Although Yampa supplies hold as a pre-defined signal function, actually it can be

expressed in terms of a more primitive signal function called iPre in Yampa, which

represents an infinitesimal delay of a signal:

iPre :: a → SF a a

We briefly explain the semantics of iPre as follows. The output signal of iPre i will

take the value of i initially, and then subsequently at time t yield the input signal at

time t− ǫ, where ǫ is an infinitesimal value close to but never equal to 0.

With iPre , we can define hold as a looping arrow as follows:

hold i = proc e → do

rec y ← iPre i−≺ z
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let z = case e of Event x → x

NoEvent → y

returnA−≺ z

In the above definition, the output z takes the event value of x if there is actually an

event coming from its input, otherwise it maintains its old value passed through an

iPre arrow.

Likewise, we can implement an edge condition checker that generates an unit event

when its input signal changes from False to True:

edge :: SF Bool (Event ())

edge = proc x → do

x ′ ← iPre True−≺ x

returnA−≺ if ¬ x ′ ∧ x then Event () else NoEvent

The edge arrow compares the current value of its input to its older value, and outputs

an event when the edge condition is satisfied. Note the use of True as the initial value

to iPre, which is to prevent triggering a false event if the input signal begins with a

True value at the start of time.

Thus far we have given a few examples illustrating some of the key features of

Yampa, and it suffices to say both integral and iPre are important primitives for

the Yampa arrow. Also we cannot help but noticing a strong similarity between their

types: both take an initial value of type a and return an arrow of type SF a a, except

that integral requires its input to be “integratable” over time. One of the primary

motivations for CCA is to capture such domain specific operators more abstractly,

and we will keep revisiting them in the remaining chapters of this thesis.
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2.2.2 Switching

Another important feature of Yampa is that programs can respond to events by

switching modes. The simplest form of switch has the following signature:

switch :: SF a (b,Event c)→ (c → SF a b)→ SF a b

The intuition is that when a switching event occurs, the signal function changes from

one into another. The first argument to switch is an arrow that models the original

behavior of the result signal function as well as the switching event, and the second

argument is an event handler that yields the signal function to switch into when

supplied an event. Note that this kind of mode switching is permanent, i.e., the

event checking is only done before the switch happens, after which no more event

is produced or checked, and thus the mode has changed permanently. On the other

hand, if we want to model recurrent event handling, we can either adopt a looping

arrow with conditionals, or use recursion as demonstrated in the example below.

To illustrate how switch can be used, we model in the program below the physics

of a bouncing ball with perfect elastic collision when hitting ground:

type Height = Double

type Velocity = Double

type Ball = (Height ,Velocity)

ball :: Ball → SF () (Height ,Event Ball)

ball (h, v) = proc ()→ do

v ← integral v0−≺ −9.8

h ← integral h0−≺ v
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e ← edge −≺ h 6 0

returnA−≺ (h, e ‘tag ‘ (h, v))

bouncing :: Ball → SF () Height

bouncing (h0 , v0 ) = ball (h0 , v0 ) ‘switch‘ (λ(h, v)→ bouncing (h,−v))

The ball arrow models the physics of a free falling ball, as well as the event detection

when its height becomes 0. Due to imperfect numerical precision of computer simu-

lations, the edge condition we use here is h 6 0 instead of h = 0. The event is then

tagged with the current value of the ball’s height h, and velocity v . The bouncing

arrow models a bouncing ball by inverting its velocity when it hits the ground. Note

that bouncing is recursively defined because we want the ball to continue bouncing,

and the arrow to switch into would just be itself, but with an inverted velocity.

Yampa supports a number of different switch primitives including parallel ones

that handle a collection of arrows. We omit such discussions in this short introduction

since they are not the focus of this thesis, and instead refer our readers to Courtney

[2004].

2.2.3 Animating Signal Functions

So far the examples we have covered are just specifications written as signal functions,

and what is missing is a way to run the actual simulation modelled by the Yampa

arrow. To do this we need to connect our program to the external world including

the I/O system. Yampa provides a reactimate function (here slightly simplified) for

this purpose:
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reactimate :: IO (DTime, a)→ (b → IO ())→ SF a b → IO ()

reactimate sense actuate sf = ...

The first argument sense is an IO action that gets the next input sample along

with the amount of time elapsed since the previous sample. The second argument

actuate takes the current output and produces an IO action. The third argument

sf is the actual signal function to execute. Although denotationally a Yampa arrow

can model both continuous and discrete behaviors, the reactimate function can only

approximate the continuous behavior through discrete sampling. Therefore the actual

signal function is run in iterations, and reactimiate will invoke sense at the start and

actuate at the end of each iteration.

The design for reactimate is to deliberately ensure a Yampa program stays true to

its denotational semantics, and is only discretized and interacts with the I/O system

when run with reactimate.
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Chapter 3

Causal Commutative Arrows

3.1 Definition

First, as mentioned in the introduction, the set of arrow and arrow loop laws is not

strong enough to capture interesting computations modelled by Yampa. In particular,

the commutativity law shown in Figure 3.1 establishes a non-interference property for

concurrent computations – effects are still allowed, but this law guarantees that they

cannot interfere with each other. We say that an arrow is commutative if it satisfies

the conventional laws as well as this critical additional law. Yampa is in fact based

on commutative arrows.

commutativity first f ≫ second g = second g ≫ first f

product init i ⋆⋆⋆ init j = init (i , j )

Figure 3.1: Causal Commutative Arrow Laws
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Second, we note that Yampa has a primitive operator called iPre that is used

to inject an infinitesimal delay into a computation; indeed it is one of the primary

effects imposed by the Yampa arrow. Similar operators, often called delay, also appear

in dataflow programming [Wadge and Ashcroft, 1985], stream processing [Stephens,

1997, Thies et al., 2002], and synchronous languages [Caspi et al., 1987, Colaço et al.,

2004]. In all cases, the operator introduces stateful computations into an otherwise

stateless setting.

In an effort to make this operation more abstract, we rename it init and capture

it in the following type class:

class ArrowLoop a ⇒ ArrowInit a where

init :: b → a b b

Our intention is for the init operator to represent a generalized concept of causality,

namely the computational dependency between the arrow’s input and output. The

type of init makes sure such a computation is polymorphic over the type of its argu-

ment that we call initial value, which is the same type as the input and output of the

returned arrow. When applied to the application domain of dataflow computations,

this dependency refers to the usual concept of temporal causality, i.e., the current

output depends only on the current as well as previous inputs. But in the general

case, we make no other assumptions about the nature of these values besides compu-

tational causality. The very existence of an init operator is an indication as well as

an evidence of causal computations.

Additionally, a valid instance of the ArrowInit class must satisfy the product law

shown in Figure 3.1. This law states that two inits paired together are equivalent to
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one init of a pair. Here we use the ⋆⋆⋆ operator instead of its expanded definition

first ... ≫ second ... to imply that the product law assumes commutativity.

We will see in later sections that init and its product law are critical to our

normalization and optimization strategies. But init is also important in allowing

us to define operators that were previously taken as domain-specific primitives, for

instance, the hold and edge arrows in Yampa.

3.2 A Language for CCA

To study the properties of CCA more rigorously, we first introduce a language for

CCA programs in Figure 3.2, which is an extension of a typed lambda calculus with

the unit and product types, a trace operator, and arrows. We elaborate our design

decisions below:

• In Haskell we use type Arrow a ⇒ a b c to represent an arrow type a mapping

from type b to type c. However, CCA does not have type classes, and thus we

write A ; B instead.

• The CCA language syntax separates expressions from arrow programs and hence

all arrow programs are only defined using the arrow combinators, and of a

static structure. This is both a simplification and a desirable property for

normalization as we shall see in the next section.

• For the same reason as above, we provide all five arrow combinators: arr , ≫,

first , loop and init , as primitive operators rather than pre-defined constants of
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Syntax

Variables V ::= x | y | z | ...

Types A,B ,C ::= 1 | M × N | A→ B | A ; B

Expressions M ,N ::= () | V | (M ,N ) | fst M | snd M | λV .M | M N | trace M

Programs P ,Q ::= arr M | P ≫ Q | first P | loop P | init M

Environment Γ ::= x0 : A0, ..., xn : An

Typing Rules

(UNIT) Γ ⊢ () : 1 (VAR)
x : A ∈ Γ

Γ ⊢ x : A
(TRACE)

Γ ⊢M : A× C → B × C

Γ ⊢ trace M : A→ B

(ABS)
Γ, x : A ⊢M : B

Γ ⊢ λx.M : A→ B
(APP)

Γ ⊢M : A→ B Γ ⊢ N : A

Γ ⊢M N : B

(PAIR)
Γ ⊢M : A Γ ⊢ N : B

Γ ⊢ (M, N) : A×B
(FST)

Γ ⊢M : A×B

Γ ⊢ fst M : A
(SND)

Γ ⊢M : A×B

Γ ⊢ snd M : B

(ARR)
⊢M : A→ B

⊢ arr M : A ; B
(SEQ)

⊢ P : A ; B ⊢ Q : B ; C

⊢ P ≫ Q : A ; C

(FIRST)
⊢ P : A ; B

⊢ first P : A× C ; B × C
(LOOP)

⊢ P : A× C ; B × C

⊢ loop P : A ; B

(INIT)
⊢M : A

⊢ init M : A ; A

Figure 3.2: CCA: a Language for Causal Commutative Arrows
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more liberal types. This is in contrast to the arrow calculus given by Lindley

et al. [2010].

• All arrow programs have an empty type environment in the typing rules, i.e.,

they are closed terms with no free variables.

• The trace operator here is similar to the trace function we have previously seen

in Figure 2.2. It provides a form of general recursion for lambda expressions

that is akin to the fix operator. In fact, we can define fix in terms of trace:

fix = λf . snd (trace (λx → ((), f (snd x ))))

And trace can also be defined from fix , of course.

Besides satisfying the usual beta law for lambda expressions, arrows in CCA must

also satisfy the nine conventional arrow laws (Figure 2.1), the six arrow loop laws

(Figure 2.2), and the two CCA laws (Figure 3.1).

3.3 Normalization

In most implementations, arrow programs carry a run-time overhead, primarily due to

the use of a data structure for arrow instances, as well as the extra tupling forced onto

function’s arguments and return values. There have been several attempts [Hughes,

2004, Nilsson, 2005] to optimize arrow-based programs using arrow laws, but the

result has not been entirely satisfactory. Although conventional arrow and arrow

loop laws offer ways to combine pure arrows and collapse nested loops, they are

not specific enough to target effectful arrows, such as the init combinator. Certain
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Figure 3.3: Diagram for loopD

effectful arrows are dynamically optimized in Nilsson [2005], but they are based on

somewhat ad-hoc laws, and there are no normal forms.

Our new strategy is based on the following rather striking observation: any CCA

program can be transformed into a single loop containing at most one pure arrow and

one initial state. More precisely, any CCA program can be normalized into either the

form arr f or:

loop (arr f ≫ second (init i))

where f is a pure function and i is an initial state. Note that all the essential

arrow combinators, namely arr , ≫, second , loop and init , are used exactly once,

and therefore all of the interpretive overheads associated with multiple occurrences

and compositions of these combinators are eliminated. Not surprisingly, the resulting

improvement in performance can be rather dramatic, as we will see later chapters

when we discuss the applications of CCA.

We define a combinator called loopD that can be viewed as syntactic sugar for the

above form:

loopD i f = loop (f ≫ second (init i))

A pictorial view of loopD is given in Figure 3.3. The second argument to loopD is

a pure function mapping a tuple of type (b, d) to (c, d), where the value of type d
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is initialized before looping back, and is often regarded as an internal state. Such

an initialized loopback is a form of decoupled cycles [Sculthorpe and Nilsson, 2009],

and any immediate loop without going through init will be collapsed using the trace

operator and become part of the pure function f .

3.3.1 Normalization Strategy

Our basic idea behind the normalization of CCA is to extend arrow loop laws to

loopD , so that we only get the loopD form as a result. Formally we define a single

step reduction 7→ for CCA as a set of rules shown in Figure 3.4, and a normalization

procedure in Figure 3.5. The normalization relation ⇓ can be seen as a big step

reduction following an innermost strategy, and is indeed a function.

Note that some of the reduction rules resemble the arrow laws of the same name.

However, there are some subtle but important differences. First, unlike the laws,

reductions are directed. Second, the reduction rules are extended to handle loopD

instead of loop.

To see how this works, it is helpful to visualize a few examples of the reduction

rules in Figure 3.4, as shown in Figure 3.6. We omit simple rules that follow directly

from the laws, and only show those that involve loopD . The diagrams in Figure 3.6

can be explained as follows:

(a) left tightening. Figure 3.6(a) shows that we can move a pure arrow from a left

composition inside a loopD arrow. This follows directly from the left tightening

law for loop.

(b) right tightening. Figure 3.6(b) shows that we can move a pure arrow from a
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composition arr f ≫ arr g 7→ arr (g . f )

left tightening arr f ≫ loopD i g 7→ loopD i (g . (f × id))

right tightening loopD i f ≫ arr g 7→ loopD i ((g × id) . f )

sequencing loopD i f ≫ loopD j g 7→ loopD (i , j ) (assoc′ (juggle ′ (g × id) . (f × id)))

extension first (arr f ) 7→ arr (f × id)

superposing first (loopD i f ) 7→ loopD i (juggle ′ (f × id))

loop-extension loop (arr f ) 7→ arr (trace f )

vanishing loop (loopD i f ) 7→ loopD i (trace (juggle ′ f ))

f × g (x , y) = (f x , g y) swap (x , y) = (y , x )

assoc ((x , y), z ) = (x , (y , z )) juggle ((x , y), z ) = ((x , z ), y)

assoc−1 (x , (y , z )) = ((x , y), z ) juggle ′ f = juggle . f . juggle

assoc′ f = assoc . f . assoc−1

Figure 3.4: Single Step Reduction for CCA

(NORM1)

arr f ⇓ arr f

(NORM2)

loopD i f ⇓ loopD i f

(INIT)

init i ⇓ loopD i swap

(SEQ)
p1 ⇓ p′1 p2 ⇓ p′2 p′1 ≫ p′2 7→ p

p1 ≫ p2 ⇓ p

(FIRST)
f ⇓ f ′ first f ′ 7→ p

first f ⇓ p

(LOOP)
f ⇓ f ′ loop f ′ 7→ p

loop f ⇓ p

Figure 3.5: Normalization of CCA
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(a) left tightening (b) right tightening

(c) sequencing (d) superposing

(e) vanishing

Figure 3.6: Illustrations of Reduction Rules
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right composition inside a loopD arrow so that it fuses with the pure function

inside the loopD . This follows directly from the left tightening law for loop and

the commutativity law.

(c) sequencing. Figure 3.6(c) shows that we can combine two loopD arrows into

one. In doing so, we have to re-route part of the computation, and make use of

the product law to fuse two init arrows into one. Notice that there is also a re-

ordering of a pure arrow and an init arrow, which is due to the commutativity

law.

(d) superposing. Figure 3.6(d) shows a variant of the superposing law for loopD

using first instead of second . Instead of an outer parallel composition, the

second line simply passes through the loopD unchanged with some re-routing.

(f) vanishing. Figure 3.6(e) shows an extension of the vanishing law for loop to

handle loopD . Since the outer loop only acts on the pure function, it can be

moved inside and composed with the trace operator due to the extension law

for loop.

3.3.2 Causal Commutative Normal Form

In order to prove that the normalization strategy for the CCA language always pro-

duces a normalized arrow term, we first show that the reduction rules are sound with

respect to the arrow laws, and the normalization procedure always terminates for all

CCA programs.

Lemma 3.3.1 (Soundness) The reduction rules given in Figure 3.4 are both type
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and semantics preserving, i.e., if p 7→ p′ then p = p′ is algebraically derivable from

the set of CCA laws.

Proof: By equational reasoning using arrow laws. The composition, extension

and loop-extension reduction rules are directly based on the arrow laws with the

same name; left and right tightening, superposing and vanishing reduction rules

follow the definition of loopD , the commutativity law, the product law, and the arrow

loop laws with the same name. The proof of the sequencing rule is more involved,

and is given in Appendix B.1. 2

Note that the set of reduction rules shown in Figure 3.4 is sound but not complete,

because the loop combinator can introduce general recursion at the value level, and

hence no equivalence relation of pure functions, and consequently of arrow terms, can

be complete.

Lemma 3.3.2 (Termination) The normalization procedure for CCA given in Fig-

ure 3.5 terminates for all CCA programs.

Proof: By structural induction over all possible definitions of a CCA program. The

rules NORM1, NORM2, and INIT are the base case, and SEQ, FIRST, and LOOP

cover the inductive case, where the sub arrows (such as p1 and p2 in p1 ≫ p2, and

f in first f and loop f ) are normalized inductively. It also explains why there are

exactly 8 reduction rules for 7→, because the premises of SEQ, FIRST and LOOP

require 4, 2 and 2 reduction rules respectively. 2

Theorem 3.3.1 (CCNF) For all well typed CCA program p : A ; B, there exists

a normal form pnorm , called the Causal Commutative Normal Form, which is either
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of the form arr f , or loopD i f for some i and f , such that pnorm : A ; B, and

p ⇓ pnorm . In unsugared form, the second form is equivalent to loop (arr f ≫

second (init i)).

Proof: Follows directly from Lemmas 3.3.1 and 3.3.2. 2

3.4 Implementation

So far we have restricted all discussions to the setting of the CCA language (Fig-

ure 3.2), but for real implementations, we choose to realize CCA as an embedded

language in Haskell for the following reasons:

• By making it an embedded language, we can re-use Haskell’s syntax and com-

piler, and save the effort of re-inventing yet another functional language from

scratch.

• We want to extend the normalization process to generic Haskell arrows of the

ArrowInit class.

• We want the implementation to be non-intrusive by making the normaliza-

tion step optional, so that a valid arrow program is still valid even when the

normalizer is turned off.

A major property of the CCA language is that all arrow programs are composed

only from the set of CCA combinators, while the same is not true for arrow programs

written in Haskell. There are in fact a number of restrictions and challenges of what

we can achieve at embedding CCA in Haskell:
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• Not all normalization of valid ArrowInit instances will terminate, for instance,

recursively defined arrows.

• For the benefit of optimal performance and the ease of implementation, we

choose to only implement the normalizer statically, i.e., at compile time. This

further restricts the set of Haskell arrows that we can normalize to the ones of

static structures.

• Even when the final program is an arrow of static structure, programmers would

often use auxiliary functions and modular definitions. In order to avoid the

complexity of separate compilation, we choose to inline all definitions so as to

obtain a single piece of the final arrow program.

3.4.1 Compile-time Translation using Template Haskell

We implement CCA normalizations in Haskell with the help from Template Haskell

[Sheard and Peyton Jones, 2002], an extension to Haskell that allows type-safe compile-

time meta-programming. Our compilation process consists of three steps:

1. The source arrow program is translated to an abstract syntax tree (AST).

2. The AST is then normalized to CCNF.

3. The result is spliced back into the original program before the Haskell compiler

finishes the rest of compilation.

The first step requires inlining of all arrow terms in preparation for the second step

that does the actual normalization. So merely grabbing the AST of a single CCA
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definition is not enough since it may contain references to other definitions. Our

solution here is to allow a generic ArrowInit instance to be instantiated as an AST

directly from within Haskell, so that when we evaluate such a term, we get a full AST.

This is performed by the Haskell compiler at the meta level and can help achieving

similar effects of inlining or substitutions. The following code snippet demonstrates

this approach:

data AExp = Arr ExpQ

| First AExp

| AExp :≫ AExp

| Loop AExp

| Init ExpQ

| LoopD ExpQ ExpQ

newtype ASyn b c = AExp AExp

The AExp data type represents an AST for CCA, and ASyn b c employs phantom

types so that we can declare ASyn to be an instance of the Arrow , ArrowLoop and

ArrowInit type classes. The ExpQ type used here is the internal syntactic represen-

tation of a Haskell expression provided by Template Haskell.

For example, the Arrow instance of Asyn can be declared as follows:

instance Arrow ASyn where

arr f = error "use arr’ instead"

AExp f ≫ AExp g = AExp (f :≫ g)

first (AExp f ) = AExp (First f )
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As we can see here, the usual arrow combinators are just syntactic operations over

the AExp data type. The problem, however, is in defining the arr combinator. For

instance, consider the following program:

f :: Arrow a ⇒ a b c

g :: Arrow a ⇒ a b ′ c ′

h :: Arrow a ⇒ a (b, b ′) (c, c ′)

h = first f ≫ arr swap ≫ first g ≫ arr swap

We can obtain the AST for h by instantiating the generic arrow type a to Asyn . This

step is automatic because any function over type ASyn u v can be applied to any

generic arrow of type Arrow a ⇒ a u v . Simply evaluating h :: ASyn (b, b ′) (c, c ′) in

a Haskell interpreter such as GHCi shall return its AST as something like below:

AExp (((First f ′ :≫ Arr swap) :≫ First g ′) :≫ Arr swap)

where f ′ and g ′ stand for the AST for f and g respectively. The instantiation of f and

g is automatic because the concrete arrow types for f and g are inferred to be ASyn

too. Another way to look at this is that AExp f ′ ::ASyn b c and AExp g ′ ::ASyn b ′ c ′

are instances of the generic arrow f and g .

The real issue here, however, is that we cannot automatically reify a Haskell

function such as swap to the meta level, so the above AST for h has a type error,

because Arr swap would not type check.

Template Haskell can reify certain expressions to the meta level, and this step is

called quotation. But it cannot do so for all values, and requires explicit quotation

using a special syntax [|...|] for certain things, such as references to global definitions.
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To work around this problem, we ask the programmer to always state the quo-

tation explicitly, and disallow direct usage of arr as indicated in the arrow instance

delcaration for ASyn . Instead of arr , we provide an arr ′ function that additionally

takes a quoted expression, for example:

arr ′ [| λx → (x , x ) | ] (λx → (x , x ))

The above would give us the needed AST for the pure function λx → (x , x ) in addition

to the function itself, where the [|...|] operation is a special Template Haskell syntax

for quoting (“quotable”) Haskell expression into an ExpQ representation. We provide

arr ′ (as well as init ′, since init faces a similar problem) in the ArrowInit class defined

below:

class (Arrow a,ArrowLoop a)⇒ ArrowInit a where

init :: b → a b b

arr ′ :: ExpQ → (b → c)→ a b c

init ′ :: ExpQ → b → a b b

loopD :: e → ((b, e)→ (c, e))→ a b c

Since asking the programmer to write in arr ′ gets tedious over time, we provide a

modified arrow syntax translator that directly outputs combinator programs written

in arr ′ and init ′ instead of arr and init .

The actual normalization of an AExp can be straightforwardly implemented as a

traversal using the algorithms given in Figures 3.4 and 3.5. We omit the details here

by just saying the CCNF of an AExp is eventually represented by either the Arr or

the LoopD constructors.
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We provide the normalization function as a Template Haskell splice operation:

norm :: ArrowInit a ⇒ a b c → ExpQ

So if we evaluate $(norm e) for any generic arrow e :: ArrowInit a ⇒ a b c, what

happens in the background is that it will first instantiate e to an ASyn arrow which is

internally represented by the AExp data type, then normalized to a LoopD (or Arr)

form, and finally spliced back as an Haskell expression loopD i f (or arr f ) for some

i and f . The $(...) operation is a special Template Haskell syntax for splicing. Since

GHC has native support for Template Haskell, the entire process happens without

any user intervention during either the compilation of a Haskell source program using

GHC, or an intepretive session using the interactive Haskell evaluator GHCi .

3.4.2 Technical Limiations

The use of Template Haskell allows a very simple implementation of the meta opera-

tions required for CCA normalization, and its integration with GHC gives a seamless

user experience. The only caveat to this approach, however, has to do with a limi-

tation of Template Haskell. For example, if we were to define a constant arrow like

this:

constant :: ArrowInit a ⇒ c → a b c

constant x = proc → returnA−≺ x

and when we try to instantiate the above arrow type a to ASyn , the compiler will

complain that the type for constant is wrong, and insist that type c must be a member

of the Lift class, which is how Template Haskell reifies a Haskell value to the meta
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level. To see exactly where is the problem, we translate the above from arrow syntax

to combinators using arr ′:

constant x = arr ′ [| λ → x | ] (λ → x )

The quotation of the lambda expression λ → x above has a reference to x , a param-

eter of the function constant , and Template Haskell cannot quote it unless it knows

how to reify the value of x to the meta level. and hence requires that the type for x

is an instance of the Lift class.

On the other hand, our goal in the first step of inlining CCA defitions is not to

lift arbitrary Haskell values, but to generate top-level code that could somehow still

relate the occurrence of variable x in a quotation to the actual parameter of constant

symbolically, so that we know how to handle substitution without evaluating the

actual value of x . In order to do so in Template Haskell would require quoting the

entire definition of constant and restricting variable x to be of the ExpQ type, the

type for quoted expressions. This will prevent us from re-using the same unmodified

code without CCA normalization, and hence compromise one of our initial goals of

making the implementation non-intrusive.

A more effective solution is to perform inlinings and substitutions at the meta

level, e.g., using a heavily customized arrow syntax preprocessor, which will no longer

rely on the evaluation of Haskell terms, and hence bypass the whole reification issue.

Unfortunately this is beyond what Template Haskell does, and we leave it to future

work.
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3.4.3 Direct Interpretation

The CCA language presented in Section 3.2 has a number restrictions, of which the

most significant one is that lambdas are not allowed at the program level, which

implies two things:

1. All arrow programs must be first-order.

2. Arrow programs can not mix with lambda expressions even when they only

contain variables at value level.

The second restriction is far stronger than the first one. In our Template Haskell

based implementation we actually relax on these two restrictions by allowing helper

functions to be used in defining the main arrow program, so long as we can extract

its full AST representation at compile-time.

We must stress that this restriction on the CCA language is only a simplification

for the sake of clarity in discussing the normalization procedure, and entirely artificial.

In other words, not all CCA can be expressed in our CCA language. It is then worth

asking the question whether the normalization procedure applies to all CCAs.

In order to answer this question, and as an alternative to compile-time transfor-

mations, we can express the CCA normalization procedure as an interpretation of

arrow programs in Haskell. This is actually a more direct approach that puts no

restriction on the source arrow program.

Figure 3.7 shows the implementation of such an interpretation. We first introduce

a generalized algebraic data type (GADT) called CCNF , whose two constructors,

Arr and LoopD represent the two cases for CCNF. We use GADT here because the

type e in the LoopD case is hidden in the signature of the CCNF b c type, and
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data CCNF b c where

Arr :: (b → c)→ CCNF b c

LoopD :: e → ((b, e)→ (c, e))→ CCNF b c

instance Arrow CCNF where

arr = Arr

(Arr f ) ≫ (Arr g) = Arr (g . f )

(Arr f ) ≫ (LoopD i g) = LoopD i (g . (f × id))

(LoopD i f ) ≫ (Arr g) = LoopD i ((g × id) . f )

(LoopD i f ) ≫ (LoopD j g) = LoopD (i , j ) (assoc ′ (juggle ′ (g × id) . (f × id)))

first (Arr f ) = Arr (f × id)

first (LoopD i f ) = LoopD i (juggle ′ (f × id))

instance ArrowLoop CCNF where

loop (Arr f ) = Arr (trace f )

loop (LoopD i f ) = LoopD i (trace (juggle ′ f ))

instance ArrowInit CCNF where

init i = LoopD i swap

Figure 3.7: CCNF as an Instance of ArrowInit
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an alternative choice here would be to use existential types. Then we declare that

CCNF is an instance of Arrow , ArrowLoop, and ArrowInit. The instance functions

are almost line by line translation of the reduction and normalization rules shown in

Figure 3.4 and Figure 3.5.

Our program indeed demonstrates that all generic ArrowInit arrows can be instan-

tiated to the CCNF data type, which captures the CCA normal form by construction.

A programmer is free to use any Haskell functions, including lambdas and general

recursion the arrow level, to construct a generic ArrowInit arrow and hopefully ob-

tain its normal form this way, that is, subject to the termination of evaluating a term

of CCNF type. In other words, Lemma 3.3.2 no longer holds, and the normal form

could be bottom. So long as we accept this relaxation on termination, we can apply

CCA normalization to all generic CCAs that are intances of ArrowInit .

An important difference between this approach and the Template Haskell based

implementation is that the actual construction of CCNF is now at run-time rather

than compile-time. Therefore, we cannot rely on GHC to take the pure function

and state captured in a CCNF and produce optimized code at compile-time. Thus

the overhead of interpreting arrow combinators still remains, and the main benefit

of CCA normalization, namely performance improvements over conventional arrow

implementations, is much weakened.

Our point here, however, is that our design of an abstract language for CCA as

shown in Figure 3.2 is purposely simplified, and shall not diminish the interest in CCA

and its normalization. Our staged compilation for CCA based on Template Haskell is

merely a first step towards making good use of CCA normalization techniques despite

its limitations. Developing a comprehensive staged and modular compiler for CCA is
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certainly our long term goal, and we leave it to furture work.

3.5 Extensions

Normalization is a strong property, and the CCA language is of limited scope. As

discussed in last section, only a subset of Haskell arrows of the ArrowInit class can

be normalized at compile time. But on the other hand, we can still extend the CCA

language while retaining the normalization property, and admit more programs to

this family.

3.5.1 ArrowChoice

Many dataflow and stream programming languages provide conditionals, such as if-

then-else, as part of the language [Wadge and Ashcroft, 1985, Caspi et al., 1987].

In Haskell, conditionals at the arrow level are captured by the ArrowChoice class

together with a set of the arrow choice laws shown in Figure 3.8. In the case of

the CCA language, we need an extension of the sum type in order support the left

combinator for ArrowChoice. Modifications to the CCA language syntax and types

are given in Figure 3.9.

We extend the types to include a sum type A + B , and the base expressions with

the left (ιl) and right (ιr) injections for sum, as well as a ⊕ operator that consumes a

sum type with either a function applying to the left branch, or another to the right.

The ⊕ operator is an equivalent definition of the commonly used case operator for

sum types. At the program level, we introduce a new left combinator. The typing

rules for the CCA language are also suitably extended as shown in Figure 3.9.
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class Arrow a ⇒ ArrowChoice a where

left :: a b c → a (Either b d) (Either c d)

extension left (arr f ) = arr (f ⊕ id)

functor left (f ≫ g) = left f ≫ left g

exchange left f ≫ arr (id ⊕ g) = arr (id ⊕ g) ≫ left f

unit arr left ≫ left f = f ≫ arr left

association left (left f ) ≫ arr assocsum = arr assocsum ≫ left f

f (⊕) g (Left x ) = Left (f x ) assocsum (Left (Left x )) = Left x

f (⊕) g (Right y) = Right (g y) assocsum (Left (Right x )) = Right (Left x )

assocsum (Right x ) = Right (Right x )

Figure 3.8: ArrowChoice Class and Its Laws
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Syntax Addition

Types A,B ,C ::= ... | A + B

Expressions M ,N ::= ... | ιl M | ιr M | M ⊕ N

Programs P ,Q ::= ... | left P

Typing Rules Addition

(CASE)
Γ ⊢M : A→ C Γ ⊢ N : B → C

Γ ⊢M ⊕N : A + B → C

(LEFT)
Γ ⊢M : A

Γ ⊢ ιl M : A + B
(RIGHT)

Γ ⊢M : B

Γ ⊢ ιr M : A + B

(LEFTARROW)
⊢ P : A ; B

⊢ left P : A + C ; B + C

Figure 3.9: CCA Language Extension for ArrowChoice
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To complete the normalization, we further extend the CCA reduction rules in

Figure 3.4 to handle ArrowChoice as follows:

extension left (arr f ) 7→ arr (f ⊕ id)

superposition left (loopD i f ) 7→ loopD i (tag−1 . (f ⊕ id) . tag)

where the function tag and tag−1 are defined below:

fmap f = (ιl . f )⊕ (ιr . f )

tag (z , y) = fmap (λx → (x , y)) z

tag−1 x = (fmap fst x , (snd ⊕ snd) x )

The soundness of the above extension to the reduction rules can be easily proved with

respect to the arrow choice laws shown in Figure 3.8, and we omit the details here.

We also need a new inference rule for the normalization procedure shown in Fig-

ure 3.5, which is given below:

(LEFT)
f ⇓ f ′ left f ′ 7→ p

left f ⇓ p

Similarly, termination can be proved for the above extension. It can also be eas-

ily shown that the above extensions requires no modification to CCNF, and Theo-

rem 3.3.1 still holds. In other words, CCA extended with ArrowChoice can still be

normalized to the same normal form as in the original CCA.

3.5.2 Multi-sort inits

As shown in earlier sections, the init arrow and its product law are essential to CCA

and its normalization. However, it is sometimes useful to consider more than one

kind of init, and each of them would obey a product law of their own.
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Figure 3.10: CCNF for CCA†
n , an Extension of CCA with Multi-sort inits

We define an extension to CCA that we call CCA†
n , such that instead of just

one init combinator, we have n combinators init0, init1, . . . , initn−1, and instead of a

single product law, we have initk i ⋆⋆⋆ initk j = initk (i , j ) holds true for all integers

k ∈ [0, n). Our intuition tells us that the normal form of CCA†
n would become

something like the one illustrated in Figure 3.10.

Before we sketch out the complete proof, we first need some custom notations.

Let us make a shorthand by denoting a nested tuple (i0, (i1, (. . . , in−1) . . .)) that has

at least one element as a sequence: I = i0, i1, . . . , in−1. Then we define a bracketed

sequence: X = 〈x0, x1, . . . , xn−1〉 where each xk ∈ X is either missing (denoted by

xk = ⋄), or present with a value (denoted by xk = ik for some ik). The injection

function ιkn injects into a bracketed sequence X of size n a single value i at position k

(xk = i, and xj = ⋄ for all 0 ≤ j < n and j 6= k). We also define a point-wise product

function ⋆ for bracketed sequences as follows:

〈 x0, x1, . . . , xn−1 〉 ⋆ 〈 y0, y1, . . . , yn−1 〉 = 〈 x0 ∗ y0, x1 ∗ y1, . . . , xn−1 ∗ yn−1 〉

where ⋄ ∗ ⋄ = ⋄

i ∗ ⋄ = i
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⋄ ∗ j = j

i ∗ j = (i, j)

Further more, we denote the packing of all present values in a bracketed sequence

X as an sequence ⌊X⌋ = ⌊xk0
, xk1

, . . . , xkm−1
⌋ = ik0

, ik1
, . . . , ikm−1

for all xkj
= ikj

,

where kp < kq for all 0 ≤ p < q < m, and m is the number of present values in

X. Conversely, we denote the unpacking of a sequence I = i0, i1, . . . , im−1 into an

X-shaped bracketed sequence Y = ⌈I⌉X , where yk = ⋄ iff xk = ⋄, and ⌊Y ⌋ = I.

Finally we define a syntactic sugar init † for multi-sort inits as follows (assuming ⋆⋆⋆

is left associative):

init †X = initk0 i0 ⋆⋆⋆ initk1 i1 ⋆⋆⋆ . . . ⋆⋆⋆ initkm−1 im−1

where X = 〈x0, x1, . . . , xn−1〉, and ⌊X⌋ = ⌊xk0
, xk1

, . . . , xkm−1
⌋ = i0, i1, . . . , im−1. It is

easy to see that initk i = init†(ιkn i).

Now with the help from the above notations, we construct a generalized product

law as a theorem for CCA†
n , and we prove that it is sound.

Theorem 3.5.1 (Generalized Product) The following law holds for all CCA†
n ,

with I and J being some bracked sequences of size n:

init †I ⋆⋆⋆ init†J = arr p ≫ init† (I ⋆ J) ≫ arr p−1

where p (x, y) = ⌊ ⌈x⌉I ⋆ ⌈y⌉J⌋

Proof: The above can be proved by induction over the size of I and J . The base

case degenerates to the ordinary product law when both I and J are single valued

sequences and p becomes an identity function. The inductive case has two sub-cases

which are symmetric, because now either I or J can have one extra value. Without
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loss of generality, suppose I has an extra value to the front, and this value can be

either missing or present. In both cases the proof is straight forward, and follows

directly from the expansion of definitions. 2

With the generalized product law, and by converting all inits to init†, we can

normalize any arrow in CCA†
n following a similar strategy to the original CCA. We

define a combinator called loopD† that can be seen as a syntactic sugar:

loopD† I f = loop (arr f ≫ second (init† I ))

where I is a bracketed sequence of size n.

The single step reduction 7→† for CCA†
n is basically the same as 7→ for CCA

(Figure 3.4) except that loopD is now replaced by loopD †, and the sequencing rule

becomes:

loopD I f ≫ loopD J g 7→† loopD (I ⋆ J) (route (juggle ′ (g × id) . (f × id)))

where route f = id × p−1 . assoc ′ f . id × p

p (x , y) = ⌊ ⌈x⌉I ⋆ ⌈y⌉J⌋

The soundness of 7→† can be easily proved following the proof for 7→, and we omit

them here.

The normalization procedure ⇓† for CCA†
n is also similar to that of ⇓ for CCA

(Figure 3.5) with the INIT rule replaced by a new rule for init†:

(INIT†
n)

initk i ⇓† loopD † (ιkn i) swap

Similarly we can prove that ⇓† terminates for all arrows in CCA†
n . Details are omitted

since it is similar to that of ⇓.
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Theorem 3.5.2 (CCNF of CCA†
n) For all well typed CCA†

n program p :: A ; B,

there exists a normal form pnorm , which is either of the form arr f , or loopD† I f for

some bracketed sequence I of size n and a pure function f , such that pnorm :: A ;
† B,

and p ⇓† pnorm . In unsugared form, the second form is equivalent to loop (arr f ≫

second (init† I )).

Proof: follows directly from the soundness of 7→† and the termination of ⇓†.

3.6 Discussion

Apart from arrows, other formalisms such as monads, comonads and applicative func-

tors have been used to model computations over data streams [Bjesse et al., 1998,

Uustalu and Vene, 2005, McBride and Paterson, 2008]. Central to many of these ap-

proaches are the representation of streams and computations about them. However,

notably missing are the connections between stream computations and their related

laws. For example, Uustalu and Vene [2005] concluded that comonad is a suitable

model for dataflow computation, but did not make the connection to comonadic laws.

In contrast, it is the very idea of making sense out of arrow and arrow loop laws

that motivated our work. We argue that arrows are a suitable abstract model for

stream computation not only because we can implement stream functions as arrows,

but also because abstract properties like the arrow laws help bring more insights to

our target application domain.

Besides having to satisfy respective laws for these formalisms, each abstraction

has to introduce domain specific operators, otherwise it would be too general to be

useful. With respect to causal streams, many have introduced init (also known as

52



delay) as a primitive to enable stateful computation, but few seem to have made the

connection of its properties to program optimization.

Recently, Lindley et al. [2010] give a more explicit explanation of the arrow laws by

constructing an arrow calculus and turning the nine arrow laws into five laws for the

calculus, and discover a redundancy in the original nine arrow laws. Unfortunately,

arrow loop is not included in their formulation.

The loop combinator and its arrow loop laws play a key role in CCA normalization

because multiple loops can be fused together, and nested loops can be collapsed into

just one. This is actually very close to yet another instantiation of the Folk Theorem

[Harel, 1980] that all computer programs can be simulated by a single while-loop, if

not for the fact that arrows and arrow loop only model a specific subset of but not

all computations. We are interested in both the generality and the discipline brought

forward by the laws.

CCA originates from an attempt to capture the essence of computations over

causal stream. However, by making it more abstract, and specifically, by not giving

the CCA language a definitive denotational semantics, we have deliberately made a

generalization and perhaps broadened its scope.

Also, when we consider possible laws for the init combinator, the following equa-

tion makes a lot of sense in the context of dataflow if we assign the meaning of a unit

delay to init :

init i ≫ arr f = arr f ≫ init (f i)

As we shall later see in Chapter 5, when we apply CCA to areas outside of dataflow,

the above no longer holds true, but the product law still does. Therefore, careful
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generalization of selected properties is a key criteria in determining the usefulness

and applicability of CCA.

But first and foremost, we have established CCA as an abstract model for causal

stream computations. In this area, the co-algebraic property of streams is well known,

and most relevant to our work is a functional representation of stream and stream

functions by Caspi and Pouzet [1998]. They also use a primitive similar to the trace

operator (and hence the arrow loop combinator) to model recursion. Their compila-

tion technique, however, lacks a systematic approach to optimize nested recursions.

We consider our technique more effective and more abstract.

Also relevant is the work of Rutten [2006] on higher-order functional stream deriva-

tives. We believe that arrows are a more general abstraction than functional stream

derivatives, because the latter still exposes the structure of a stream. Moreover, ar-

rows give rise to a high-level language with richer algebraic properties than the 2-adic

calculus considered in Rutten [2006].
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Chapter 4

Application: Synchronous Dataflow

4.1 Dataflow Languages

One of the notable applications of arrows is in the area of dataflow languages, and in

particular, synchronous dataflow languages that include Yampa. In fact, CCA was

initially designed to model applications in this domain, where init would correspond

to the domain specific delay primitive. In this chapter we first give an overview of

dataflow languages, and then we look at a popular design of an arrow based DSL for

synchronous dataflow and its embedded implementation in Haskell. Finally we illus-

trate that the normalization of CCA serves as a practical and effective normalization

technique that brings drastic performance improvements.

4.1.1 Overview

The dataflow programming model represents programs as directed graphs where the

nodes represent instructions, and the data flows between the nodes along the directed
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arcs [Arvind and Culler, 1986, Davis and Keller, 1982]. The original motivation for

dataflow was the exploitation for parallelism because instructions can be executed as

soon as their operands becomes available. Many developments have taken place in

designing both the hardware architecture and software systems for dataflow. Active

research has also gone into designing programming languages for dataflow, such as

Signal [Gautier et al., 1987], Lustre [Caspi et al., 1987, Halbwachs et al., 1991a],

Esterel [Berry and Cosserat, 1985], Lucid [Wadge and Ashcroft, 1985], and so on.

Very often, dataflow programming languages are thought of as a specific type of

functional languages because in a pure dataflow model, the computation at each node

is entirely local and there is no global data store. Indeed, many of the FRP languages,

including Yampa, can be seen as variants of dataflow languages.

4.1.2 Synchronous Dataflow

One particular model that became widely used for programming reactive systems is

the synchronous paradigm [Halbwachs, 1992, Lee and Messerschmitt, 1987], where the

behavior of a program is a sequence of reactions, and each reaction is considered as

an atomic cycle of reading current inputs, producing current outputs, and updating

internal states [Halbwachs et al., 1991a]. These atomic cycles are perceived as taking

no time (logically), and hence all events occurring during a single cycle are considered

simultaneous.

The synchronous paradigm is of course just a hypothetical ideal, and in practice,

the assumption is that the program is able to react to an external event before any

further event occurs, and hence the ideal behavior becomes a sensible abstraction.

56



4.2 Stream

Synchronous dataflow languages such as Esterel, Signal, and Synchronous Lucid,

provide high-level and modular ways to program reactive systems following both the

synchronous paradigm and the dataflow model, in which expressions denote infinite

streams (also known as sequences or flows) of values, and common operations on basic

types are lifted to the stream level point-wise.

The individual values in a stream are usually indexed by a clock, which is basically

a sequence of natural numbers if we only consider discrete streams. A common

practice is to index the n-th value in a stream of the base clock at the n-th cycle during

the program execution. In synchronous languages, the notion of clock represents a

logical time that is decoupled from the physical time it actually takes to perform the

computation steps.

Conceptually if we represent a stream of values as an abstract data type S a, it

can be viewed as a function over the clock:

S a ≈ Clock → a

Many dataflow language also consider something called multi-clockrate, where

different streams are associated with different clocks. Streams of different clocks can

be simulated by partial streams, which is a stream that may have empty positions

to indicate the pace of its clock with respect to the base clock. For simplicity, if we

assume that all streams are discrete and only of the base clock, we can give a concrete

representation of our stream type S a as follows:

newtype S a = S {hd :: a, tl :: S a }
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In other words, a stream of type a is represented by its head (a value of type a),

and its tail that is also a stream. This is a very common representation of streams in

Haskell.

As an example, we show in Figure 4.1 a Haskell implementation of a DSL for

synchronous dataflow. It makes use of various Haskell type classes to define a number

of primitives, and we elaborate on the details below:

• We make use of the Functor and Applicative classes to implement the lifting of

values (as well as functions) onto the stream level, where

– pure x creates a stream of constant value x ;

– f <⋆> x applies a stream of functions (represented by f ) to a stream of

values (represented by x ) pointwise;

– fmap f lifts a pure function to the stream level so that it can be applied

to each element of an input stream. Also, the applicative law for the

Applicative class states that fmap f x = pure f <⋆> x .

– In addition, we define a set of lifting functions, lift , lift2 and lift3 , and

they lift functions that take one, two, or three arguments to the stream

level.

• We make use of the various type classes for basic Haskell types to overload their

operators to the stream level. For example, with the Eq instance for the data

type S , we can directly write x ≡ y to compare the equality of two streams x

and y . Similarly, common arithmetic operators can directly operate on streams

too.
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instance Functor S where

fmap f (S x xs) = S (f x ) (fmap f xs)

instance Applicative S where

pure x = S x (pure x )

(S f fs) <⋆> (S x xs) = S (f x ) (fs <⋆> xs)

i ‘fby ‘ x = S i x

lift f x = pure f <⋆> x -- or lift = fmap

lift2 f x y = pure f <⋆> x <⋆> y -- or lift2 f x y = lift f x <⋆> y

lift3 f x y z = pure f <⋆> x <⋆> y <⋆> z -- or lift3 f x y z = lift2 f x y <⋆> z

instance Eq a ⇒ Eq (S a) where

(≡) = lift2 (≡)

instance Ord a ⇒ Ord (S a) where

(6) = lift2 (6)

instance Num a ⇒ Num (S a) where

(+) = lift2 (+)

(∗) = lift2 (∗)

negate = lift negate

abs = lift abs

signum = lift signum

instance Fractional a ⇒ Fractional (S a) where

(/) = lift2 (/)

fromRational = lift romRational

Figure 4.1: A Stream Based Dataflow DSL
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• Following the convention of Lucid, we define a ‘fby ‘ (followed-by) infix operator

that delays an input stream by one clock cycle and sets its initial value. It is the

primary operator for stateful computation in dataflow languages. A different

but equivalent design choice is to separate the delay and initialization into two

operators, e.g., Lustre uses pre for delay, and → for initialization.

With the simple DSL primitives defined in Figure 4.1, we can already make inter-

esting dataflow programs, and we give some examples below.

ones = constant 1

sum x = x + 0 ‘fby ‘ sum x

nats = sum ones

fibs = let f = 0 ‘fby ‘ g

g = 1 ‘fby ‘ (f + g)

in f

The stream ones is a constant stream of 1s, and sum is a function that maps from

a stream of numbers to a stream of its pointwise sumation, and when applied to

ones , we obtain a stream of natural numbers nats . The stream fibs represents the

Fibonacci sequence inductively defined by the set of mathematical equations f0 =

0, f1 = 1, fn+2 = fn+1 + fn.

Notice that in this DSL, all primitives are also Haskell functions, and we can

directly write dataflow programs using many other Haskell features such as lambda

abstraction, let expression, overloaded operators, etc. It not only saves us effort of

having to build and parse a new language syntax, but also enables a much richer

language design by re-using Haskell native functions. This kind of DSL embedding is
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also known as shallow embedding.

A dataflow program written in our DSL is just a definition of a stream. One of the

many ways to evaluate such a program is to look up its stream value at n-th position:

runs :: Int → S a → a

runs n (S v x ) = if n ≡ 0 then v else runs (n − 1) x

The handful primitives provided in Figure 4.1 can already make up a fairly rich

set of dataflow programs, but there are still a few things we cannot express in this

DSL:

• The current value of a stream can only depend on past values (by using ‘fby ‘),

but not the future. This is a property of causality we can ensure by limiting

the choice of primitives.

• Moreover, the current value of a stream can not depend on stream values in an

arbitrary past since ‘fby ‘ only provides an unit delay, not a delay of arbitrary

length. This is usually one of the properties that can help ensure that the

space requirement for each computation cycle are bounded so that the overall

synchrony hypothesis can be met for real-time reactive systems.

One caveat of shallow embedding in Haskell, however, is that not all properties of

the DSL can be safe-guarded in the implementation. For example, even though ‘fby‘

of arbitrary length is not provided, we can still accumulate all historical values in

an unbounded Haskell list. So unless one writes programs only using primitive types

(whose size are bounded) and with no recursion, we cannot fulfill the bounded space

requirement given above.
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4.3 Stream Transformer

As we might have noticed, all the primitive operators for our stream based dataflow

DSL (Figure 4.1) map an input stream to an output stream. In other words, they are

stream transformers (or stream functions). Just like we can capture streams with an

abstract data type S a, we can also capture stream transformers as follows:

SF a b ≈ S a→ S b

Not incidentally, stream transformers are arrows, or to be more specific, CCAs. In-

stead of manipulating first-class stream objects, we now compose stream transformers

using arrow combinators:

• arr f produces an output stream by applying the pure function f to each element

in the input stream.

• f ≫ g composes two stream functions together, passing the input stream

through f and then through g .

• first f accepts a stream of tuples (that is isomorphic to a tuple of streams), and

passes the first stream through f without changing the second one.

• loop f creates a form of loopback around the stream function f by connecting

the second part of f ’s output stream back to the second part of f ’s input, and

thus enables recursive dataflow.

• init i delays its input stream by one cycle, and sets i as the initial value of

its output stream. Just like ‘fby ‘, init is the primary operator that introduces

causal and stateful computation to an arrow based dataflow DSL.
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The same kind of program that previously was written using the dataflow DSL can

now be written in an arrow form. The following implements the same examples we

saw, but now written as arrows in the arrow syntax:

constant x = arr (λ → x )

ones = constant 1

sum = proc x → do

rec s ← init 0−≺ s + x

returnA−≺ s

nats = ones ≫ sum

fibs = proc → do

rec f ← init 0−≺ g

g ← init 1−≺ (f + g)

returnA−≺ f

As can be seen above, the use of arrow syntax actually helps to visualize the dataflow

through our arrows. There are a few important differences between a stream based

program and an arrow based one:

• There is no standalone streams in an arrow based program, and even constant

must be represented as a stream function mapping from any stream to a con-

stant stream.

• Since there is no stream, we no longer have to overload arithmetic operators

such as those provided by the Num and Fractional classes. For example, in the

definition of sum, we simply write s + x where the + is a plain math operator.
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• We no longer need recursive definition for streams or stream functions in the

arrow program, and instead we use the loop operator to represent recursions in

a dataflow at the value level (rather than the arrow level). Notice that the use

of rec keyword in the arrow syntax would translate to loop after desugaring.

This is actually a very important feature because we now have the freedom to

traverse and transform a composite arrow without worrying about running into

recursive definitions. Later in Chapter 5 and Chapter 6 we will see the real

advantage of eliminating space leaks using the arrow loop form in stead of the

general recursion.

We give a sample implementation of a dataflow DSL that captures a causal stream

transformer using arrows, as shown in Figure 4.2. A few details are explained as

follows:

• SF a b is an arrow representing transformers from streams of type a to streams

of type b. It is essentially a recursively defined data type consisting of a func-

tion with its continuation, a concept closely related to a form of finite state

automaton called a Mealy Machine [Mealy, 1955]. The same data type was

called Auto in [Paterson, 2001].

• SF is declared an instance of type classes Arrow , ArrowLoop and ArrowInit .

These instances obey all of the arrow laws, including the two additional laws

for CCA.

• runsf :: SF a b → S a → S a converts an SF arrow into a plain function that

maps an input stream to an output stream.
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newtype SF a b = SF (a → (b, SF a b))

instance Arrow SF where

arr f = SF h where h x = (f x , SF h)

first (SF f ) = SF (h f ) where h f (x , z ) = let (y , SF f ′) = f x

in ((y , z ), SF (h f ′))

SF f ≫ SF g = SF (h f g) where h f g x = let (y , SF f ′) = f x

(z , SF g ′) = g y

in (z , SF (h f ′ g ′))

instance ArrowLoop SF where

loop (SF f ) = SF (h f ) where h f x = let ((y , z ), SF f ′) = f (x , z )

in (y , SF (h f ′))

instance ArrowInit SF where

init i = SF (h i) where h i x = (i , SF (h x ))

runsf :: SF a b → S a → S b

runsf (SF f ) = g f where g f (S x xs) = let (y , SF f ′) = f x

in S y (g f ′ xs)

Figure 4.2: A Stream Transformer Based Dataflow DSL
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We must stress that the SF type is but one example CCA instance for dataflow

programming, and alternative implementations such as the synchronous circuit type

SeqMap in [Paterson, 2001] and the stream function type (incidentally also called)

SF ) in [Hughes, 2004] also qualify as valid instances of CCA. The abstract properties

of CCA such as normal forms are applicable to any of these instances, and thus

illustrates that CCA is more broadly applicable than optimization techniques based

on a specific semantic model, such as the one considered in [Caspi and Pouzet, 1998].

4.4 Optimization

As discussed in Chapter 3, the usual arrow instance declarations come with interpre-

tive overheads associated with the arrow data type and combinators, and one of the

key properties of defining something as a CCA is to have a normal form that is free

of such overheads.

First of all, by Theorem 3.3.1, all SF arrow can be normalized to either a pure

arrow or a loopD form. As an example, Figure 4.3 shows the arrow diagram of

fibs before (a) and after normalization (b). In unsugared form, the fibs presented

in Section 4.3 is equivalent to the following definition written in arrow combinators,

whose diagram is shown in Figure 4.3(a):

fibs = loop (arr snd ≫ loop (arr (uncurry (+)) ≫ init 1 ≫ arr dup) ≫

init 0 ≫ arr dup)

where dup x = (x , x )

If we express the normal form of fibs in Haskell, it is equivalent to the following

definition, whose diagram is shown in Figure 4.3(b):
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(a) Original fibs

(b) Normalized fibs

Figure 4.3: Normalization of fibs
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ccnf fibs = loopD (0, 1) (λ( , (x , y))→ (x , (y , x + y)))

= loop (arr (λ( , (x , y))→ (x , (y , x + y))) ≫ second (init (0, 1)))

Notice that in Figure 4.3(b), the pure function looks a bit more complex than what

is presented in the code above, and init (0, 1) is actually drawn as init 0 ⋆⋆⋆ init 1.

This is intentional because we want to show that the two diagrams in Figure 4.3 are

indeed isomorphic to each other: they have exactly the same set of nodes and edges,

and the only difference is the layout.

In the remainder of this section we describe a simple sequence of optimizations

that dramatically improve the run-time speed of our stream transformer arrows, and

thus demonstrate the real power of CCA normalization when used as a program

optimization technique for dataflow DSLs.

SF Arrow One observation is that instead of defining loopD as syntactic sugar, we

can implement it directly using the SF data type:

loopD i f = SF (g i) where g i x = let (y , i ′) = f (x , i) in (y , SF (g i ′))

As a special case of runsf defined in Figure 4.2, usually we are only interested in

computing the nth element of the output stream when the input is a constant unit

stream. This gives the following function that avoids constructing the output stream

as an S a object:

nthsf :: Int → SF () b → b

nthsf n (SF f ) = x ‘seq ‘ if n ≡ 0 then x else nthsf (n − 1) f ′ where (x , f ′) = f ()

Notice that we use seq to force strict evaluation in each iteration.
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CCNF Tuple Given the fact that a CCNF is no more than a pair of a state and a

pure function, we can drop the SF data structure altogether by simply using the pair

instead of an arrow written in loopD form. We call the pair (i , f ) a CCNF tuple for a

CCNF in the form loopD i f . Correspondingly we can define the stream transformer

runccnf and the nth element evaluator nthccnf as follows:

runccnf :: (d , (b, d)→ (c, d))→ S b → S c

runccnf (i , f ) = g i

where g i (S x xs) = let (y , i ′) = f (x , i) in S y (g i ′ xs)

nthccnf :: Int → (d , ((), d)→ (c, d))→ c

nthccnf n (i , f ) = aux n i

where aux n i = x ‘seq ‘ if n ≡ 0 then x else aux (n − 1) i ′

where (x , i ′) = f ((), i)

Instead of taking an arrow, the above two functions just take a CCNF tuple and

use the pure function to update the state in a loop computation. In doing so, we have

successfully transformed away all arrow instances, including the SF data structure

used to implement them!

Inlining As we have mentioned in Section 3.4, all arrow definitions must be inlined

in the final program at compile-time before the CCA normalization takes place. Be-

sides this inlining step performed by Template Haskell, a Haskell compiler such as

GHC may perform more inlining after we obtain a normal form, which will produce

further optimized code.

For example, the actual code generated by our CCA normalizer $(norm fibs) is
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as follows:

$ (norm fibs) = loopD ifibs ffibs

ifibs = (0, 1)

ffibs = trace (juggle . assoc . (dup × id . swap)× id . juggle .

trace (juggle . dup × id . swap . (uncurry (+))× id . juggle)× id .

assoc−1 . snd × swap . juggle)

The CCNF tuple for the fibs arrow is just (ifibs , ffibs). Notice the sequence of function

compositions in ffibs is the result of our CCA normalization procedure, which can be

further simplified through inlining. The built-in optimization techniques of GHC can

already do this without any user intervention.

We demonstrate this step with the CCNF for fibs , though the technique is equally

applicable to any CCNF. To compute the nth element of the Fibonacci sequence, we

can just apply nthccnf to the CCNF tuple (ifibs , ffibs) like this:

nthfibs :: Int → Double

nthfibs n = nthccnf n (ifibs , ffibs)

When given proper optimization flags, GHC is able to aggressively optimize the above

code and fully inline all functions in the definition of ffibs and nthfibs . The following is

the equivalent intermediate representation extracted from GHC (also know as Core

files) after optimization:

nthfibs n = case n of {I# m → go 0 1 m }

go :: Int#→ Int#→ Int#→ Int

go x y n = case n of
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DEFAULT → go y (x + y) (n − 1)

0 → I# x

As we can see, GHC has successfully inlined not only the function nthccnf but also ifibs

and ffibs , and transformed everything into a tight loop using only strict and unboxed

types (those marked by #). Notice that the tuple in ifibs is actually turned into

curried form and passed as arguments to the go function. This kind of aggressive

optimization essentially results in compiling a CCA program directly to a tight loop

that is free of any memory allocation of intermediate data structures.

4.5 Operational Semantics and CCA

The CCNF tuple of a CCA has a close relationship to a Mealy machine [Mealy, 1955],

a form of finite state automaton. Formally, a Mealy machine with inputs in set A

and outputs in set B is a pair (S, φ), where S is a set of states, and φ : S → (B×S)A

is a transition function. This function maps each s0 ∈ S to a function that produces

for every input a ∈ A an unique pair (b, s1), consisting of the output b and the next

state s1. In categorical terms, it is a coalgebra of the functor F : Set → Set on the

category of sets and functions, which is defined as F (S) = (B × S)A.

If we look at the function f in a CCNF tuple (i , f ), it has the type (b, d)→ (c, d),

which is isomorphic to the type of φ in a Mealy machine, where d corresponds to the

S set. Then the initial state i in a CCNF tuple would represent the starting state

s0 ∈ S.

Mealy machines are interesting because they implement causal functions over

streams. A Mealy machine that takes an input stream <a0, a1, · · · , ak, · · ·> and yields
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an output stream <b0, b1, · · · , bk, · · ·> can be described as a sequence of transitions:

s0−−→
a0|b0 s1−−→

a1|b1 · · ·−−→ak |bk sk−−→
ak+1|bk+1 · · ·

where a single-step transition is defined as:

si−−→
ai|bi si+1 === (bi, si+1) = φ(si) ai

If we translate the above to a Haskell function with a CCNF tuple (i , f ) representing

a Mealy machine, where i = s0 and f = φ, it would just be the runccnf function

defined in Section 4.4.

Therefore, by normalizing a stream transformer program from its original arrow

form to a CCNF tuple, we have essentially discovered a Mealy machine implementing

an operational semantics for stream transformers. It is also interesting to note that

the normalization step can be regarded as an application of the axiomatic semantics

for stream transformers stated in the form of CCA laws.

We know that axiomatic semantics is more abstract, and hence a language char-

acterized by its axiomatic semantics admits more programs than one only defined by

an operational semantics. This is also true in the case of CCA. As we shall see later

in Chapter 5, where we give a very different operational semantics to CCA when it

is applied in an application domain that is not dataflow.

4.6 Benchmarks

We ran a set of benchmarks to measure the performance of several programs written

in arrow syntax, but compiled and optimized in different ways. For each program,

we:
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1. Compiled with GHC, which has a built-in translator for arrow syntax, and ran

nthsf on the result arrow. (GHC )

2. Translated using Paterson’s arrowp pre-processor to arrow combinators, com-

piled with GHC, and ran nthsf on the result arrow. (arrowp)

3. Normalized to CCNF, compiled with GHC and ran nthsf on the normalized

arrow. (CCNF sf )

4. Normalized to CCNF, compiled with GHC and ran nthccnf on the CCNF tuple.

(CCNF tuple)

The four benchmarks are: a sine wave with fixed frequency using Goertzel’s

method [Goertzel, 1958], the Fibonacci and factorial arrows given earlier, and a

bounded counter taken from Courtney [2004]. The programs are compiled with GHC

version 7.1 (development branch) and run on an Intel Atom N270 1.6GHz machine

with a 32-bit Linux OS. We use the compilation flags -O2 -fvia-C -fno-method-sharing

-fexcess-precision with GHC, and measure the CPU time used to run a program

using the Criterion benchmark package [O’Sullivan]. The results are shown in Fig-

ure 4.1, where the numbers represent normalized speedup ratios, and we include the

source program for all benchmarks in Appendix A.

The results show dramatic performance improvements using normalized arrows.

We note that:

1. Based on the same arrow implementation, the performance gain of CCNF over

the first two approaches is entirely due to program transformations at the source

level. This means that the run-time overhead of arrows is significant, and cannot
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Table 4.1: Dataflow Benchmark Speed Ratio (greater is better)

Name GHC arrowp CCNF sf CCNF tuple

sine 1.0 2.40 17.05 470.56

fibonacci 1.0 1.87 16.48 123.15

factorial 1.0 3.09 15.84 22.62

bounded counter 1.0 3.22 44.48 98.91

be neglected for real applications.

2. With the help from GHC’s optimization technique, the CCNF tuple produces

high-performance code that is free of dynamic memory allocation and interme-

diate data structures (with varying degrees 1), and can be orders of magnitude

faster than its arrow-based predecessors.

3. GHC’s arrow syntax translator does not do as well as Paterson’s original trans-

lator for the sample programs we chose, though both are significantly outper-

formed by our normalization techniques.

4. We notice that the speed-ups brought by the CCNF tuple in the factorial case is

much lower than the others. This is because for this benchmark we use Haskell’s

unbounded Integer type, whereas in the Fibonacci case we only use the 32-bit

Int type. A significant portion of the computation time is spent in doing big

integer arithmetics, and hence the benefit of removing the arrow overhead seems

1This is subject to how much GHC can do in terms of unboxing types and currying function

arguments, and in general not guaranteed as discussed in Section 4.7.
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less compared to other benchmarks, but is still significant.

As mentioned in Section 4.4, our implementation of the CCA optimization relies on

a Haskell compiler to carry out the final inlining of the pure function, and strict-ness

analysis to remove unboxed types. One reason for taking this approach is that we

shall leave it to the compiler to do what it is already capable of doing, and as seen in

the micro benchmarks here, it is already very effective.

On the other hand, exactly what GHC does to further optimize the CCNF tuple

remains obscure to the programmer. For example, when we examine the Core program

generated by GHC, we find that it is very good at unboxing all intermediate values

and currying the state tuple for the sine function, but only partially unboxed some

values for the Fibonacci function. As for the bounded counter, GHC does not unbox

any intermediate values or curry the state tuple. Apparently there is more room for

improvements, and perhaps implementing a separate inlining and strictness analysis

module just for CCNF tuples could be more beneficial to the end programmers. We

leave it to the future work.

4.7 Discussion

Most synchronous languages, including the one introduced by Caspi and Pouzet

[1998], are able to compile stream programs into a form called single loop code by

performing a causality analysis to break the feedback loop of recursively defined val-

ues. Many efforts have been made to generate efficient single loop code [Halbwachs

et al., 1991b, Amagbegnon et al., 1995], usually by a compilation from a high level

dataflow source language to a target language that is usually imperative and low level,
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but few express the transformation at the source level to reach a normal form with

strong characterization. Our discovery of CCNF is original, and the optimization by

normalization approach is targeting a lazy functional language, namely Haskell, and

making use of an advanced Haskell compiler to further optimize and produce low level

code.

Biernacki et al. [2008] propose a modular compilation technique for synchronous

languages by introducing an intermediate language to represent transition functions.

One of the major problems addressed by their work is that traditional modular com-

pilation of synchronous languages imposes too strong a causality constraint that every

feedback loop must cross an explicit delay. However, such a problem simply cease to

exist when we adopt a lazy functional language as an intermediate or even the target

language, for instance, as in our staged compilation for CCA. This is because the

ability to represent immediate loopbacks, or recursions at value level, is a coherent

feature of lazy languages. As discussed in Section 3.4.3, CCA by itself does not pre-

clude modular compilations, even though our abstract CCA language and its current

implementation through Template Haskell requires full inlining of arrow terms and

hence are not modular.

The normalization procedure for CCA is applicable to causal stream functions in

general. It is interesting to compare it to the stream fusion technique introduced by

Coutts et al. [2007]. Stream fusion can help fuse zips, left folds, and nested lists into

efficient loops. But on its own, it does not optimize recursively and lazily defined

streams effectively.

Consider a stream generating the Fibonacci sequence. One way of writing it in

Haskell is to exploit laziness and zip the stream with itself:
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fibs :: [Int ]

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

While the code is concise and elegant, such programming style relies too much on the

definition of a co-inductively defined structure. The explicit sharing of the stream fibs

in the definition is both a blessing and a curse. On one hand, it runs in linear time

and constant space. On the other hand, the presence of the stream structure gets in

the way of optimization. None of the current fusion or deforestation techniques are

able to effectively eliminate cons cell allocations in this example. Real-world stream

programs are usually much more complex and involve more feedbacks, and the time

spent in allocating intermediate structure and by the garbage collector could degrade

performance significantly.

We can certainly write a stream in stepper style that generates the Fibonacci

sequence following the techniques by Coutts et al. [2007]:

data Stream a = forall s . Stream (s → Step a s) s

data Step a s = Yield a s

fibStream :: Stream Int

fibStream = Stream next (0, 1)

where next (a, b) = Yield r (b, r) where r = a + b

fibNth :: Int → Int

fibNth n = nthStream n fibStream

Stream fusion will fuse nthStream and fibStream to produce an efficient loop for fibNth .

For a comparison, with our technique the arrow version of the Fibonacci sequence
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shown in Section 4.3 compiles to the same efficient loop, and yet retains the benefit

of being abstract and concise.

We must stress that writing stepper functions is not always as easy as in trivial

examples like fibs and fact . Most non-trivial stream programs that we are concerned

with contain many recursive parts, and expressing them in terms of combinators in a

non-recursive way can get unwieldy. Moreover, this kind of coding style exposes a lot

of operational details which are arguably unnecessary for representing the underlying

algorithm.

In contrast, arrow syntax relieves the burden of coding in combinator form and

allows recursion via the rec keyword. It also completely hides the actual implemen-

tation of the underlying stream structure and is therefore more abstract.

On the topic of program optimization under an FRP or arrow setting, Burchett

et al. [2007] introduce a concept called “lowering” that helps fuse pure functions in

FrTime, a strict FRP language embedded in Scheme, but unfortunately it does not

handle stateful computation such as the single unit delay; Nilsson [2005] makes use of

several arrow laws and generalized algebraic types to optimize Yampa implementa-

tion, and in particular some stateful computations and event processing; Sculthorpe

and Nilsson [2008] consider change propagation as a means to optimize Yampa pro-

grams with a dynamic structure.
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Chapter 5

Application: Ordinary Differential

Equations

In this chapter, we study a number of embedded DSLs for autonomous ordinary

differential equations (autonomous ODEs) in Haskell. A naive implementation based

on the lazy tower of derivatives is straightforward but has serious time and space

leaks due to the loss of sharing when handling cyclic and infinite data structures. In

seeking a solution to fix this problem, we explore a number of DSLs ranging from

shallow to deep embeddings, and middle-grounds in between. We advocate a solution

based on arrows, which happens to capture both sharing and recursion elegantly. We

further relate our arrow-based DSL to CCA, whose normalization leads to a staged

compilation technique improving ODE performance by orders of magnitude.
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5.1 Introduction

Consider the following stream representation of the “lazy tower of derivatives” [Kar-

czmarczuk, 1998] in Haskell:

data D a = D {valD :: a, derD :: D a } deriving (Eq , Show)

Mathematically it represents an infinite sequence of derivatives f(t0), f ′(t0), f ′′(t0),

. . ., f (n)(t0), . . . for a function f that is continuously differentiable at some value

t0. This representation has been used frequently in a technique called Functional

Automatic Differentiation [Karczmarczuk, 1998, Elliott, 2009]. The usual trick in

Haskell is to make D a an instance of the Num and Fractional type classes, and

overload the mathematical operators to simultaneously work on all values in the

tower of derivatives as follows:

instance Num a ⇒ Num (D a) where

D x x ′ + D y y ′ = D (x + y) (x ′ + y ′)

u@(D x x ′) ∗ v@(D y y ′) = D (x ∗ y) (x ′ ∗ v + u ∗ y ′)

negate (D x x ′) = D (−x ) (−x ′)

fromInteger = constD . fromInteger

zeroD :: Num a ⇒ D a

constD, varD :: Num a ⇒ a → D a

zeroD = D 0 zeroD

constD c = D c zeroD

varD c = D c (constD 1)

For example, if we want to calculate the derivative of a Haskell function f x =
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x2 + 2 ∗ x + 3 at x = 1, instead of passing 1 to f , we evaluate f (varD 1), and

get D 6 (D 4 (D 2 (D 0 (...)))), which corresponds to the tower of derivatives

f(1), f ′(1), f ′′(1), . . .

5.1.1 Autonomous ODEs and the Tower of Derivatives

We first present a simple but novel use of the “lazy tower of derivatives” to imple-

ment a domain specific language (DSL) for autonomous ordinary differential equations

(autonomous ODEs). Mathematically, an equation of the form:

f (n) = F (t, f, f ′, . . . , f (n−1))

is called an ordinary differential equation of order n for an unknown function f(t),

with its nth derivative described by f (n), where the types for f and t are R→ R and

R respectively. A differential equation not depending on t is called autonomous. An

initial value problem of a first order autonomous ODE is of the form:

f ′ = F (f) s.t. f(t0) = f0

where the given pair (t0, f0) ∈ R× R is called the initial condition. The solution to

a first-order ODE can be stated as:

f(t) =

∫
f ′(t)dt + C

where C is the constant of integration, which is chosen to satisfy the initial condition

f(t0) = f0.

In Haskell we represent the above integral operation as initD that takes an initial

value f0:
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initD :: a → D a → D a

initD = D

As an example, consider the simple ODE f ′ = f , whose solution is the well known

exponential function, and can be defined in terms of initD:

e = initD 1 e

which is a valid Haskell definition that evaluates to a concrete value: the value of e

at t0 = 0, namely 1, along with a recursively defined tower of derivatives of e at t0,

each again equal to 1.

In general, by harnessing the expressive power of recursive data types and over-

loaded arithmetic operators, we can directly represent autonomous ODEs as a set of

Haskell definitions. Such a representation precisely captures the mathematical rela-

tion among the derivatives of the unknown function at a given point, with proper

initialization. We give a few more examples in Figure 5.1. Note that in the sine wave

and damped oscillator examples, we translate higher-order ODEs into a system of

first-order equations.

The solution to the initial value problem of an ODE can often be approximated

by numerical integration. Here is a program that integrates a tower of derivatives at

t0 to its next step value at t0 + h using the Euler method, for an infinitesimal step

size h:

eulerD :: Num a ⇒ a → D a → D a

eulerD h f = D (valD f + h ∗ valD (derD f )) (eulerD h (derD f ))

The function eulerD lazily traverses and updates every value in the tower of deriva-
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Sine wave y′′ = −y y = initD y0 y ′

y ′ = initD y1 (−y)

Damped oscillator y′′ = −cy′ − y y = initD y0 y ′

y ′ = initD y1 (−c ∗ y ′ − y)

Lorenz attractor x′ = σ(y − x) x = initD x0 (σ ∗ (y − x ))

y′ = x(ρ− z)− y y = initD y0 (x ∗ (ρ− z )− y)

z′ = xy − βz z = initD z0 (x ∗ y − β ∗ z )

Figure 5.1: A Few ODE Examples

tives by their next step values. By repeatedly applying eulerD, we can sample the

approximate solution to an ODE:

sampleD :: Num a ⇒ a → D a → [a ]

sampleD h = map valD . iterate (eulerD h)

For instance, evaluating sampleD 0.001 e generates an infinite sequence of the expo-

nential function exp(t) sampled at a 0.001 interval starting from t = 0:

[1.0, 1.001, 1.002001, 1.003003001, 1.004006004001, ...

5.1.2 Time and Space Leak

Thus far, we have designed a DSL embedded in Haskell for autonomous ODEs. How-

ever, our DSL, despite its elegant implementation, has but one problem: the numer-

ical solver has serious time and space leaks. For instance, unfolding the sequence

sample 0.001 e in GHCi exhibits a quadratic time behavior instead of linear. Evalu-

ating more complex definitions than e can exhibit even worse leaks.
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(a) cyclic structure (b) infinite structure

Figure 5.2: Two Structural Diagrams for e

The problem is that data sharing is lost when we update a recursive structure.

In a lazy and pure functional setting, cyclic and infinite data structures are indistin-

guishable when they semantically denote the same value, as illustrated in Figure 5.2.

Usually an implementation of a lazy language allows one to “tie the knot” using recur-

sive definitions such as e = initD 1 e, which would create an internal data structure

as pictured in Figure 5.2(a). This kind of knot tying, however, is very limited, and

even the simplest traversal such as the identity traversal below loses sharing:

idD (D v d) = D v (idD d)

When evaluating idD e, a lazy (call-by-need) strategy fails to recognize that in the

unfolding of idD e = idD (D 1 e) = D 1 (idD e), the last and first occurrences

of idD e could share the same value, and therefore produces something like in Fig-

ure 5.2(b). Repeatedly evaluating an update function such as eulerD on a recursively

defined value of type D a will force unfolding the structure indefinitely, and hence

create leaks both in space and time.
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5.1.3 Approach

In the remainder of this chapter we embark on a journey seeking the best way to

implement our DSL for ODEs with varying degrees of embedding. Specifically, we

make the following contributions:

1. We study the problem of handling cyclic and infinite structures by analyzing

different DSL representations and implementations, from shallow to deep em-

beddings, and mid-grounds in between.

2. We present an arrow-based DSL that captures sharing implicitly but without

the usual deficiency of having to observe and compare equivalences using tags

or references. Additionally the use of arrow notation [Paterson, 2001] enables

succinct syntax for ODEs.

3. We illustrate that sharing and recursion in an object language can be better

captured by arrows than higher-order abstract syntax (HOAS), even though

both are mixing shallow and deep embeddings.

4. We make use of the arrow properties, and specifically the normal form of causal

commutative arrows (CCA), to compile our DSL and eliminate all overhead

introduced by the abstraction layer.

Finally if we compare the DSL for ODE to FRP languages that model continuous

signals, they actually share some common characteristics including the way programs

are written. There are a number of differences, however, and we elaborate below:

1. Semantically, continuous signals in FRP denote time-changing values, while the
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variables in ODE denote functions that are differentiable, and not necessarily

related to passage of time or a logical clock.

2. Operationally, the integral operator in FRP takes one time-changing signal and

generates another time-changing signal, which implies tangible results are pro-

duced at every cycle of running a FRP program. The integral operator in

modeling an ODE, however, only represents the relationship between a func-

tion and its derivative symbolically, and it is only when we want to solve an

ODE, we consider the actual numerical method that samples the ODE func-

tion. There is nothing preventing us from using an algebraic method to solve

ODEs symbolically, and yet the leak problems discussed here would still surface

since they are related to the representation of an ODE but not necessarily the

numerical methods.

3. The temporal causality of FRP signals demands a forward integration, but an

ODE can be solved in either direction, forward or backward. In other words, the

usual temporal view of causality, namely, current outputs depending on current

and past inputs, falls apart when we consider ODEs. Instead, we shall resort to

the generalized notion of computational causality that is still applicable in the

case of the integral operator for ODEs.
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5.2 Sharing of Computation

5.2.1 A Tagged Solution

To distinguish cyclic from infinite data structures, we can make the sharing of sub-

structures explicit by labeling them with unique tags [O’Donnell, 1992]. The traversal

of a tagged structure must keep track of all visited tags and skip those that are already

traversed in order to avoid endless loops.

It must be noted, however, that not all infinite data structures can be made

cyclic. This can be demonstrated by the multiplication of two towers of derivatives

x, x′, . . . , x(m−1), . . . and y, y′, . . . , y(n−1), . . ., which produces the following sequence:

xy

x′y + xy′

x′′y + x′y′ + x′y′ + xy′′

. . .

Even if both sequences of x and y are cyclic, i.e., x(i) = x(i mod m), y(j) = y(j mod n), for

some m and n, and any i ≥ m, j ≥ n, the resulting sequence does not necessarily have

a repeating pattern that loops over from the beginning, or any part in the middle.

Therefore merely adding tags to the tower of derivatives is not enough; we need to

represent mathematical operations symbolically so that they become part of the data

structure and hence subject to traversal as well. For instance:

data E a = EI a (T a) -- init operator

| E1 Op (T a) -- unary arithmetic

| E2 Op (T a) (T a) -- binary arithmetic
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type T a = Tag (E a)

data Tag a = Tag Int a

type Op = String

This is a simple DSL that supports initialization (EI ) in addition to both unary (E1 )

and binary (E2 ) operations. Since every node in a (T a) structure is tagged, we

can easily detect sharing or cycles by comparing tags. There are different ways to

generate unique tags; we follow Bjesse et al. [1998] and use a state monad. We give

the rest of the DSL implementation in Figure 5.3, where the State type and functions

like modify and get are from the standard Haskell module Control .Monad .State, and

liftM and liftM2 are monadic lifting functions from the module Control .Monad .

To demonstrate the usage for this tag based DSL, we show below a program for

the lorenz attractor, previously shown in Figure 5.1:

lorenzM (x0 , y0 , z0 ) = mdo

x ← initM x0 (σ ∗ (y − x ))

y ← initM y0 (x ∗ (ρ− z )− y)

z ← initM z0 (x ∗ y − β ∗ z )

let x = return x

y = return y

z = return z

return z

In the above definition, we use the mdo syntax for recursive Monads [Erkök and

Launchbury, 2002, Erkök, 2002] to give recursive definitions within a Monadic setting.

Note that the mathematical operators such as ∗, +, and − are all lifted operations
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type M a = State Int (T a) -- monad that returns T a

instance Num a ⇒ Num (M a) where

x + y = liftM2 (E2 "+") x y >>= tag

x ∗ y = liftM2 (E2 "*") x y >>= tag

negate x = liftM (E1 "-") x >>= tag

fromInteger = constM . fromInteger

instance Fractional a ⇒ Fractional (M a) where

fromRational = constM . fromRational

x / y = liftM2 (E2 "/") x y >>= tag

newtag :: State Int Int -- to get fresh new tag

newtag = modify (+1) >> get

tag :: E a → M a -- tag a node with new tag

tag x = newtag >>= λi → return (Tag i x )

initT :: a → T a → M a -- init with a new tag

initT v d = tag (EI v d)

initM :: a → M a → M a

initM v = (>>=initT v)

zeroM :: Num a ⇒ M a

zeroM = mfix (initT 0)

constM :: Num a ⇒ a → M a

constM c = initM c zeroM

Figure 5.3: A Tag Based DSL for Autonomous ODE
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at the Monad level. The programas certainly looks a bit cumbersome compared to

the one written using the “tower of derivative”, and this is because we have to use

a monad so that each time when initM is called, a new tag can be generated and

tagged to the newly created EI node.

Since our DSL now represents all operations as part of its data structure, we no

longer need the chain rule to evaluate multiplication, and instead we just represent

it symbolically. Such a technique is often called deep embedding in contrast to our

first DSL, which is a shallow embedding since all its operators are ordinary Haskell

functions.

To evaluate our DSL, we need a valT and a valE function that yield the current

value of a T a and E a structure respectively:

valT :: Fractional a ⇒ T a → a

valT (Tag x ) = valE x

valE :: Fractional a ⇒ E a → a

valE (EI v ) = v

valE (E1 "-" x ) = − valT x

valE (E2 "+" x y) = valT x + valT y

valE (E2 "-" x y) = valT x − valT y

valE (E2 "*" x y) = valT x ∗ valT y

valE (E2 "/" x y) = valT x / valT y

To solve the ODE represented by our DSL, we also need an eulerT and a sampleM

function that approximate the solution:

eulerT :: Fractional a ⇒ a → T a → T a
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eulerT h x = evalState (auxT x ) [ ]

where

auxT (Tag i x ) = fmap (lookup i) get >>= maybe (mfix f ) return

where f y = modify ((i , y):) >> auxE x >>= return . Tag i

auxE (EI v d) = liftM (EI (v + valT d ∗ h)) (auxT d)

auxE (E1 op x ) = liftM (E1 op) (auxT x )

auxE (E2 op x y) = liftM2 (E2 op) (auxT x ) (auxT y)

sampleM :: Fractional a ⇒ a → M a → [a ]

sampleM h x = map valT $ iterate (eulerT h) $ evalState x 0

The eulerT function traverses a tagged structure and updates the current values

of every EI node to their next step values by numerical integration, with derivative

values calculated by applying valT to the derivative node. It also remembers all visited

nodes in a state monad, and reuses them when repeating tags are encountered.

With the same exponential example now defined as e = mfix (initT 1), 1 repeat-

edly sampling its value in GHCi now exhibits a linear time behavior, and runs in

constant space as one would have expected.

After moving from shallow to deep embedding, and with the help of tags, we are

now able to recover sharing in the interpretation of our tagged DSL because:

• Deep embedding enables program transformations beyond what is possible with

shallow embedding.

• Sharing or cycles can be better retained in a DSL program than in the result it

1Function mfix computes the fixed point of a monad, and is of type MonadFix m ⇒ (a →

m a)→ m a
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computes.

By abstracting the computation about the tower of derivatives, we alleviate the bur-

den of maintaining proper sharing in computing an infinite data structure to the

representation of a DSL of which cyclic structures are made explicit. Although the

tagged solution successfully avoids space leaks, it is cumbersome due to the extra

baggage of generating unique tags.

For example, if we are to provide a monadic eulerM :: a → M a → M a, not only

must all existing tags in the argument remain unique, a new set of tags will have to

be created to accommodate the returned result. All this tag handling gets in the way

of expressing our intended algorithm.

5.2.2 Higher Order Abstract Syntax

Although the tagged solution successfully avoids space leaks, it is cumbersome due to

the overhead of generating and maintaining unique tags. One way to avoid dealing

with tags is to mimic Let-expressions for sharing, and Letrec for recursion. However,

Let-expressions in the object language require variable bindings and their interpreta-

tions. Indeed, variables are just lexically scoped tags, and they are remembered in

an environment instead of a state monad.

An alternative solution that avoids variable bindings in the object language is to

use higher-order abstract syntax (HOAS). For example, we may modify our DSL to

include both Let and Letrec as follows:

data H a = HI a (H a) -- init operator

| H1 Op (H a) -- unary operator
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| H2 Op (H a) (H a) -- binary operator

| Let (H a → H a) (H a)

| LetRec (H a → H a)

| Var Int -- for internal use only

Where Let f x introduces the sharing of x in the result of f x , and LetRec f introduces

an explicit cycle in computing the fixed point of f . When traversing Let and LetRec,

however, we have to remember shared values for later lookups in an environment. For

this reason we need to use Var i to represents an index i in such an environment. We

give the complete implementation of this DSL in Figure 5.4. Like in the tag based

DSL, we make a complete syntax tree of the DSL with recursive definitions handled

by LetRec, and all mathematical operators, including multiplication, are represented

symbolically.

To evaluate the HOAS based DSL, we define a valH function below that returns

the current value of an H a structure. In order to handle Let and LetRec, we need to

remember variable bindings in an environment that maps variable names (represented

as an integer) to a pair consisting of the actual parameter, and its current value. The

former is needed to create the closure used in Let or LetRec during an update traversal,

and further details will be explained shortly.

type Env a = [(Int , (H a, a))]

valH :: Fractional a ⇒ Env a → H a → a

valH env (HI x ) = x

valH env (H1 "-" x ) = −valH env x

valH env (H2 "+" x y) = valH env x + valH env y
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instance Num a ⇒ Num (H a) where

x + y = (H2 "+") x y

x ∗ y = (H2 "*") x y

negate x = (H1 "-") x

fromInteger = constH . fromInteger

instance Fractional a ⇒ Fractional (H a) where

fromRational = constH . fromRational

x / y = (H2 "/") x y

initH :: a → H a → H a

initH = HI

zeroH :: Num a ⇒ H a

zeroH = LetRec (initH 0)

constH :: Num a ⇒ a → H a

constH v = initH v zeroH

Figure 5.4: A HOAS Based DSL for Autonomous ODE
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valH env (H2 "-" x y) = valH env x − valH env y

valH env (H2 "*" x y) = valH env x ∗ valH env y

valH env (H2 "/" x y) = valH env x / valH env y

valH env (Let f x ) = valH env (f x )

valH env (LetRec f ) = valH env (fix f )

valH env (Var i) = case lookup i env of

Just ( , x )→ x

Nothing → error ("variable " ++ show i ++ " not found")

To solve the ODE represented by our DSL, we also need an eulerH and a sampleH

function that approximate the solution:

eulerH :: Fractional a ⇒ a → H a → H a

eulerH h = aux [ ]

where

aux env (HI v x ) =

let v ′ = v + h ∗ valH env x

in HI v ′ (aux env x )

aux env (H1 op x ) = H1 op (aux env x )

aux env (H2 op x y) = H2 op (aux env x ) (aux env y)

aux env (Let f x ) =

let x ′ = aux env x

i = length env

f ′ y = aux ((i , (y , valH env x )) : env) (f (Var i))

in Let f ′ x ′
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aux env x@(LetRec f ) =

let i = length env

f ′ x ′ = aux ((i , (x ′, valH env x )) : env) (f (Var i))

in LetRec f ′

aux env (Var i) =

case lookup i env of

Just (x , )→ x

Nothing → error ("variable " ++ show i ++ " not found!")

sampleH :: Fractional a ⇒ a → H a → [a ]

sampleH h = map (valH [ ]) . iterate (eulerH h)

The eulerH function will traverse the syntax tree, and update all HI nodes to the

next time step. The only tricky parts are the Let and LetRec nodes that must be

“opened up” and “duplicated” during the traversal. As an example, let us take the

actual code snippet that traverses the Let node and look at the details:

aux env (Let f x ) =

let x ′ = aux env x

i = length env

f ′ y = aux ((i , (y , valH env x )) : env) (f (Var i))

in Let f ′ x ′

The function aux remembers shared values in an environment variable env during a

traversal. To update a node of Let f x is to create a new function f ′ out of f in some

way, and return Let f ′ x ′. In computing f ′ it must reference the environment to get

the shared value of x using valH env x . Therefore f ′ is really a new closure.
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Also notice that the way we traverse the body of function f is to supply a dummy

variable Var i as its argument, and later tie the reference to Var i back to the

parameter y of function f . This is why we need to remember y as part of the mapping

of an environment variable, in addition to just the variable’s value valH env x .

Since our host language Haskell is not able to introspect or evaluate under lamb-

das, repeatedly updating HOAS structures in this way will result in building larger

and larger closures, and hence creating a new kind of space leak.

Therefore, even though we can now define the same exponential ODE as e =

LetRec (initH 1), evaluating sampleH e in GHCi will still result in a space leak.

A possible remedy to this situation is memoization [Michie, 1968]. For example,

we can have a pair of conversion functions between the HOAS language and the

tagged language:

toT :: H a → T a

fromT :: T a → H a

Computation over H a can then be expressed in terms of computations over T a.

As a result of toT , the intermediate tagged structure is of fixed size (relative to the

input), and hence fromT will create a HOAS structure also of fixed size.

Unfortunately, this approach introduces considerably more runtime overhead and

begins to feel just as cumbersome as tagging. Therefore we consider HOAS inadequate

as a technique for object languages that require careful sharing.
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5.2.3 Summary

As discussed in above sections, by abstracting the computation about the tower of

derivatives, we alleviate the burden of maintaining proper sharing in computing an

infinite data structure to the representation of a DSL of which cyclic structures are

made explicit.

The initial DSL around type D a is shallow embedding, and such DSL programs do

not easily lend to further analysis or transformation because they are indistinguishable

from programs written in the host language. The tagged solution, on the other hand,

is deep embedding, and despite its obvious interpretive overhead, it is able to recover

proper sharing through the manipulation of the DSL program itself.

HOAS creates a middle ground – while the usual operators remain symbolic, the

use of DSL level Let and LetRec directly employs functions from the host language –

even though a correct implementation must sacrifice efficiency in order to fix a new

leak problem. The question is, does there exist a solution that’s both succinct at

presentation and efficient at run-time?

The answer is yes. By leveraging on arrows, not only are we able to provide a

clean representation of ODE, but also to discover better implementations.

5.3 ODE and Arrows

We begin with an abstract view of an ODE program without committing to a par-

ticular implementation. Here is the exponential example written in arrow syntax:
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Sine wave y′′ = −y proc ()→ do

rec y ← init y0−≺ y ′

y ′ ← init y1−≺ −y

returnA−≺ y

Damped oscillator y′′ = −cy′ − y proc ()→ do

rec y ← init y0−≺ y ′

y ′ ← init y1−≺ −c ∗ y ′ − y

returnA−≺ y

Lorenz attractor x′ = σ(y − x) proc ()→ do

y′ = x(ρ− z)− y rec x ← init x0−≺ σ ∗ (y − x )

z′ = xy − βz y ← init y0−≺ x ∗ (ρ− z )− y

z ← init z0−≺ x ∗ y − β ∗ z

returnA−≺ (x , y , z )

Figure 5.5: ODE Examples in Arrow Notation

e = proc ()→ do

rec e ← init 1−≺ e

returnA−≺ e

We give more examples in Figure 5.5 by re-writing in arrow syntax the same ODEs

given in Figure 5.1. We can easily tell that the arrow programs are almost line by

line translation of the ODE equations.

To implement such an ODE arrow, we simply lift all arithmetic operations to pure

arrows, and the only domain specific operator we need is init . Following our previous
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two DSL designs, we have to traverse the internal structure of our DSL and update

all initial values. Hence a natural choice is to implement our arrow to reflect this

kind of traversal. We present the complete implementation in Figure 5.6, including

the evaluation functions euler and sample.

The ODE type is parameterized by the type of initial value s , and implemented

as a function that takes an Updater and an input value of type a, and returns a pair:

output value of type b, and an updated ODE. The only place we actually apply the

Updater is in the init combinator, where both the initial value and the current input

are given to the Updater to produce an updated initial value:

All other arrow combinators simply pass the Updater around to complete a full

traversal. The numerical integration is done by passing the euler function as the

Updater .

This approach is not only elegant, it is also efficient – there are no space leaks. For

example, unfolding sample 0.001 e in GHCi executes correctly and exhibits a linear

time behavior. This is because

1. The representation of an ODE is composed from a fixed number of arrows with

no cycles, and thus the traversal will always terminate.

2. Although the arrow itself is implemented as a higher-order function, unlike the

HOAS implementation, it makes no environment lookup, and does not build

new closure upon existing ones.

3. The traversal of all arrows returns new arrows of the same size, which can be

proved by a structural induction as follows:

(a) The traversal of a pure arrow always returns a pure arrow of the same size.
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newtype ODE s a b = ODE (Updater s → a → (b,ODE s a b))

type Updater s = s → s → s

instance Arrow (ODE s) where

arr f = ODE h where h u x = (f x , arr f )

ODE f ≫ ODE g = ODE h where h u x = let (y , f ′) = f u x

(z , g ′) = g u y

in (z , f ′ ≫ g ′)

first (ODE f ) = ODE h where h u (x , z ) = let (y , f ′) = f u x

in ((y , z ), first f ′)

instance ArrowLoop (ODE s) where

loop (ODE f ) = ODE h where h u x = let ((y , z ), f ′) = f u (x , z )

in (y , loop f ′)

init :: s → ODE s s s

init i = ODE h

where h f x = (i , init (f i x ))

euler :: Num s ⇒ s → Updater s

euler h i x = i + h ∗ x

sample :: Num s ⇒ s → ODE s () c → [c ]

sample h (ODE f ) = y : sample h f ′

where (y , f ′) = f (euler h) ()

Figure 5.6: An Arrow Based DSL for Autonomous ODE
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(b) The traversal of all arrow compositions (≫, first , and loop) always returns

a composition of the same structure, and of the same size.

(c) The update of initial values is only within the init arrow, which also returns

a new arrow of the same size.

Of course the above is only an informal proof; a formal proof would depend on a more

precise definition of size, and the lazy (call-by-need) semantics of the host language.

It must be noted, however, that much of the above reasoning has little to do with

the actual implementation of the arrow and its combinators. In other words, arrows

capture sharing by design.

This intuition becomes more evident when we look at arrow programs written

using combinators. As a slightly more complex example, we translate the program

for a damped oscillator given in Figure 5.5 to combinators below:

loop (arr snd ≫ loop (arr f ≫ init y1 ≫ arr dup) ≫ init y0 ≫ arr dup)

where dup x = (x , x )

f (y , y ′) = −c ∗ y ′ − y

It is obvious that the above program consists of a fixed number of arrows that are easy

to traverse or manipulate. The same program is presented pictorially in Figure 5.7

where the loops represent the values of y (outer) and y ′ (inner) being fed back to the

inputs. Their values are shared at all the “points”. For instance, the function dup

only evaluates its argument once.

Both HOAS and arrow-based DSLs can be viewed as middle grounds between shal-

low and deep embeddings. We advocate the use of arrows because, Unlike HOAS,

lambdas in the object language are represented as compositions of arrow combinators,
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Figure 5.7: Arrow Diagram of Damped Oscillator

which lends to easy program manipulation. Also, We no longer have to deal with vari-

able bindings, environments or open terms since all arrows translate to combinators

that are always closed, and do not require memoization.

5.4 ODE and CCA

The init arrow for ODE introduces an internal state that is subject to both intentional

computation (for being an arrow) and extensional examination (for being part of a

traversal). More importantly, it is commutative and also satisfies the product law for

CCA if we extend the mathematical integral from scalar values to vectors. Therefore,

we can apply CCA normalization to ODE arrows. For example, the arrow program

for damped oscillator is normalized to a CCNF below:

loop (arr f ≫ second (init i))

where i = (y0, y1)

f ( , (y , y ′)) = let y ′′ = −c ∗ y ′ − y

in (y , (y ′, y ′′))
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Just like what we saw in Chapter 4, we can utilize the CCA normalization as a

staged compilation technique that effectively turns an arrow program into a CCNF

tuple (i , f ), where

• The state i is a nested tuple that can be viewed as a vector since all states in

our ODEs are of the same numerical types.

• The pure function f computes the derivative of a state vector.

With this result in mind, we can implement a new sampling function that approx-

imates the solution to ODE arrows with just the CCNF tuple, which is shown in

Figure 5.8. The VectorSpace class captures state vectors with a scalar multiplication

operator ∗ˆ, and also regains the homogeneous type required by euler . Such tu-

ples are made instances of the Num class, where arithmetic operators are overloaded

point-wise. The sample function then takes the CCNF tuple (i , f ) we obtain from

the normalization of an arrow program, uses function f to calculate the derivative of

i , and computes its next step value using euler .

Now it becomes even clearer that there is no space leak because only the state

vector is updated during the repeated sampling, while the pure function remains

unchanged.

5.5 Benchmark

We compare the DSL performance of the tagged solution, the ODE arrow and CCA-

based staged compilation by running ODE examples listed in Figure 5.1 and Fig-

ure 5.5. We do not consider the very first DSL and the HOAS version because they
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class VectorSpace v a where

(∗ˆ) :: v → a → a

instance Num a ⇒ VectorSpace a a where

x ∗ˆ y = x ∗ y

instance (VectorSpace v a,VectorSpace v b)⇒ VectorSpace v (a, b) where

k ∗ˆ (x , y) = (k ∗ˆ x , k ∗ˆ y)

instance (Num a,Num b)⇒ Num (a, b) where

negate (x , y) = (negate x , negate y)

(x , y) + (u, v) = (x + u, y + v)

(x , y)− (u, v) = (x − u, y − v)

(x , y) ∗ (u, v) = (x ∗ u, y ∗ v)

euler :: (VectorSpace v a,Num a)⇒ v → a → a → a

euler h i i ′ = i + h ∗ˆ i ′

sample :: (VectorSpace v a,Num a)⇒ v → (a, ((), a)→ (b, a))→ [b ]

sample h (i , f ) = aux i

where aux i = x : aux j

where (x , i ′) = f ((), i)

j = euler h i i ′

Figure 5.8: Approximate Solutions to ODE with CCNF Tuples
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Table 5.1: ODE Benchmark Speed Ratio (greater is better)

Name Tagged Arrow CCA

Exponential 1 0.17 83.72

Sine wave 1 0.35 27.52

Damped oscillator 1 1.13 82.34

Lorenz attractor 1 3.55 159.54

both have space leaks, and neither do we include results from the memoized HOAS

version since it is always slower than the tagged DSL. The benchmarks were compiled

with GHC version 7.1 (development branch) and run on an Intel Atom N270 1.6GHz

machine with a 32-bit Linux OS. All programs are compiled to compute 104 sam-

ples using GHC 6.10.4 with compilation flag -O2 -fvia-C -fno-method-sharing

-fexcess-precision, and the speed is measured using the Criterion benchmark

package [O’Sullivan]. The results are given in Table 5.1, where all numbers are speed-

up ratios measured in CPU time normalized to the speed of the first column. We

make the following observations:

1. As the ODE gets more complex (from exponential, to sine, to oscillator, and

to Lorenz), the tagged version becomes slower compared to the arrow version

since it incurs more overhead interpreting the DSL, as well as remembering and

comparing visited tags.

2. The arrow version is slower than the tagged version for simpler ODEs, which is

attributed to the overhead of interpreting the arrow combinators.
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3. For the micro benchmarks presented here, the CCA version is orders of mag-

nitude faster since it is free of all arrow and arrow syntax overhead. Just like

what we have shown in Section 4.4, the intermediate Core program generated

by GHC also confirms that the CCA optimization leads to very efficient target

code in a tight loop.

5.6 Discussion

Before discussing the sharing problem in general, one may ask why we take the long

road implementing a DSL for ODEs, when they can be directly represented in Haskell

as a function that computes derivatives. For example, the damped oscillator ODE in

Figure 5.1 can be described as follows:

f (y , y ′) = let y ′′ = −c ∗ y ′ − y

in (y ′, y ′′)

Coupled with a set of initial values (y0, y1), they can be used to compute numerical

solutions to the ODE. A major drawback, however, is that such a pair is at too low

level because it is unable to:

1. express the function represented by an ODE as a single value;

2. express compositions such as y ∗ y where y is defined by the above ODE;

3. make room for new extensions.

The lack of abstraction renders such a direct representation a poor choice for a DSL.

Moreover, the purpose of this chapter is not to solve differential equations, but to
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illustrate an use case for CCA, and explore the design space of embedded DSLs that

preserves sharing of computation. It is also worth noting that our staged compilation

through CCA yields a similar pair of function and state. In other words, we compile

from a more expressive DSL at a higher level of abstraction to lower level programs.

Memoization caches previous computation results and later re-uses instead of re-

computes them. A generic memo function builds an internal lookup table that may

interfere with garbage collection, and the prompt release of cached data is critical to

the success of this technique. A memo function can be implemented purely but must

sacrifice laziness of the function being memoized, while a lazy memo cannot be pure

since it requires pointer comparisons [Hughes, 1985].

The sharing problem discussed in this paper is of course not new. A majority of

efforts have focused on detecting cycles and properly representing them. O’Donnell

[1992] uses integer tags for explicit labelling, while Claessen and Sands [1999] sug-

gest a non-conservative extension using references. Gill [2009] introduces type-safe

observable sharing using stable names within the IO monad. These techniques usu-

ally translate a lazy cyclic structure into an equivalent graph representation, but are

inefficient at handing updates.

Introducing variable bindings to denote sharing or recursion in an algebraic data

type is not new either. Fegaras and Sheard [1996] adopt HOAS, while Ghani et al.

[2006] employ de Bruijn indices in a nested data type [Bird and Paterson, 1999].

There are also efforts to give an alternative semantics to the fixed point operator so

that cycles can be successfully recovered [Weddig, 2005].

For DSLs both shallow and deep embeddings have their respective pros and cons,

and therefore it is worth exploring middle grounds. In particular, HOAS is known for
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its less interpretive overhead, but at the same time it does not allow easy manipula-

tions. Atkey et al. [2009] recently suggest a reification of HOAS into deep embedding

for further processing. On the other hand, Carette et al. [2007] propose a finally

tagless encoding that enables very shallow embedding, but unfortunately it does not

handle cycles.

Historically the normal order reduction of a combinator program is known to

preserve sharing in a similar way to lazy (call-by-need) evaluation [Turner, 1979],

but such a style has rarely been used to represent sharing or cycles in algebraic data

types despite having less overhead than both variable bindings and de Bruijn indices.

The arrow abstraction gives rise to a rich algebra in a combinator style, which makes

it a suitable candidate for traversals and updates, as well as transformations using

the set of arrow laws. Further more, CCA normalization can be applied as a staged

compilation technique that eliminates all interpretive overhead.
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Chapter 6

Application: Functional Reactive

Programming

Functional Reactive Programming (FRP) is a general framework for programming

hybrid systems that supports both continuous-time and discrete-time signals. The

conceptually continuous signals in FRP is what distinguishes it from the synchronous

dataflow model we considered in Chapter 4 that is only discrete. In this chapter

we first take a look at different implementations of continuous signals in FRP and

how arrows help eliminating a space leak problem plaguing earlier FRP implemen-

tations. Then we further abstract over the hybrid model and generalize it to CCA

with multi-sort inits, which gives rise to a new compilation technique for arrow based

FRP languages such as Yampa. Finally we explore the limitations of CCA being an

abstract programming model for hybrid systems, and give a general discussion on the

general space leak problem and its relationship to evaluation strategies of functional

languages.
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6.1 Conventional FRP

As mentioned in Chapter 1, continuous values in FRP, which are called signals (or

behaviors), are time-varying values that can be conceptually thought of as functions

of time:

Signal α ≈ Time→ α

The power of FRP lies in the fact that programming is done at the level of signals.

For example, two signals s1 and s2 may be added together, as in s1 + s2 , which

is the point-wise sum of the functions representing s1 and s2 . More importantly,

stateful computations such as integration and differentiation may be applied to sig-

nals. For example, the integral of signal s is another signal that can be just written

as integral i s, where i represents the initial value of the integral at the starting

time. Therefore it is easy to write integral or differential equations commonly used

to describe dynamic systems, in similar ways to the DSLs for ODEs considered in

Chapter 5.

In retrospect, even though FRP is more general than ODEs, and their respective

implementations are vastly different1, at a high level and especially when we only

consider continuous signals, they share many common characteristics including the

way programs are written. We will come back to explore the connections between

them in Section 6.2.2.

Despite the appealing nature of continuous signals, and their elegant representa-

tion as functions of time, in practice we are interested in computing a continuous

1With the exception of arrow based implementations, which are actually similar because both

employ data structures based on continuation.
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stream of these values on a digital computer, and thus the functional implementa-

tion implied by the above representation is impractical. In what follows we describe

two of the simplest implementations that we have used, and that are adequate in

demonstrating the space leak problem that we were once puzzled upon.

6.1.1 Stream Based FRP

In the book The Haskell School of Expression [Hudak, 2000] continuous signals are

called behaviors and are defined as a function from a list of discrete time samples to

a list of values. A simplified version of this is given in Figure 6.1 where, instead of

time samples, we use time intervals (which we call “delta times” and are represented

by the type DTime). Also included is a definition of an integral function, integralB,

which takes an initial value and returns a signal that is the numerical integration of

the input signal using the Euler integration method.

The evalB function in Figure 6.1 evaluates a signal at a given point of time, and

turns a signal into a function of time, which in reality is only approximated by discrete

samples at a fixed global time step dt using the sampleB function. Notice that we are

also using a strict version of the list index (!!) operator so as to force the evaluation

of each sample, and hence remove any time and space leak caused by the standard

lazy (!!) operator.

In similar ways to what we did for the dataflow DSL in Chapter 4, common

arithmetic operations can be lifted to the signal level, and we omit them here.
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type Time = Double

type DTime = Double

newtype B a = B ([DTime ]→ [a ])

integralB :: Double → B Double → B Double

integralB i (B f ) = B (λdts → scanl (+) i (zipWith (∗) dts (f dts)))

evalB :: B Double → Time → Double

evalB (B f ) t = sampleB !! (truncate (t / dt))

sampleB :: B Double → [Double ]

sampleB (B f ) = f (repeat dt)

(x : xs) !! n = if n ≡ 0 then x else x ‘seq ‘ (xs !! (n − 1))

Figure 6.1: Stream-Based Signal in FRP

newtype C a = C (a,DTime → C a)

integralC :: Double → C Double → C Double

integralC i (C p) = C (i , λdt → integralC (i + fst p ∗ dt) (snd p dt))

evalC :: C Double → Time → Double

evalC x t = sampleC x !! (truncate t / dt)

sampleC :: C Double → [Double ]

sampleC (C p) = fst p : sampleC (snd p dt)

Figure 6.2: Continuation-Based Signal in FRP
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6.1.2 Continuation Based FRP

An alternative approach to implementing FRP is to view a signal as a pair consisting

of its current value and a simple continuation that depends only on the time interval

giving rise to its future values. The full definition is given in Figure 6.2, where

integralC , evalC and sampleC are the corresponding functions to integralB, evalB and

sampleB shown in Figure 6.1.

6.1.3 Time and Space Leak

Despite the heralded advantages of functional languages, perhaps their biggest draw-

back is their sometimes poor and often unpredictable consumption of space, especially

for non-strict (lazy) languages such as Haskell. A number of optimization techniques

have been proposed, including tail-call optimization, CPS transformation, garbage

collection, strictness analysis, deforestation, and so on [Clinger, 1998, Appel, 1992,

Wadler, 1987a,b, 1988, Marlow, 1996]. Many of these techniques are now standard

fare in modern day compilers such as the GHC. Not all optimization techniques are

effective at all time, however, and in certain cases may result in worse behavior rather

than better [Gustavsson and Sands, 2001]. There has also been work on relative leak-

iness [Bakewell and Runciman, 2000, Gustavsson and Sands, 2001, Bakewell, 2001],

where the space behavior of different optimization techniques or abstract machines

are studied and compared.

In fact, both of the above FRP implementations, with their innocent-looking

definitions, can lead to space leaks. In particular, suppose we define a recursive

signal such as this definition of the exponential value e, which directly reflects its
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e = integralC 1 e

= let p = (1, λdt → integralC (1 + fst p ∗ dt) (snd p dt))

in C p

= let p = (1, f )

f = λdt → integralC (1 + 1 ∗ dt) (f dt)

in C p

Figure 6.3: Unfolding e

mathematical formulation e(t) =
∫ t

0
e(t)dt:

e = integralC 1 e

Evaluating successive values of e using sampleC will soon blow up in any standard

Haskell compiler, eating up memory and taking successively longer and longer to com-

pute each value. (The same problem arises if we use integralB instead of integralC .)

Our intuition tells us that unfolding the time series of a signal such as e should be

constant in space and linear in time. Yet in reality, the time complexity of evaluating

the nth value of e is O(n2) and the space complexity is O(n).

To see where the leak occurs, let’s unfold the definition of e using call-by-need

evaluation. We adopt a familiar style of using let-expressions to denote sharing of

terms [Launchbury, 1993, Ariola et al., 1995, Maraist et al., 1998]. The unfolding of

e, where e = integralC 1 e, is shown in Figure 6.3.

The problem here is that the standard call-by-need evaluation rules are unable to

recognize that the function:
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f = λdt → integralC (1 + dt) (f dt)

is indeed equivalent to:

f = λdt → let x = integralC (1 + dt) x in x

The former definition causes work of computing f dt to be repeated in evaluating the

recursive body of f , whereas in the latter case the computation is shared.

To better understand the problem, it might help to describe a simpler but anal-

ogous example. Suppose we wish to define a function that repeats its argument

indefinitely:

repeat x = x : repeat x

or, in lambdas:

repeat = λx → x : repeat x

This requires O(n) space. But we can achieve O(1) space by writing instead:

repeat = λx → let xs = x : xs

in xs

This kind of optimization of space behavior is one of the memoization techniques in

a lazy functional language, which caches the result of function application (the term

repeat x ) using a data structure (the list xs). Such a transformation is also called

“knot tying” since it regains the sharing of a recursive function call site.

One may ask why we cannot do the same thing to optimize integralC e? It is a

non-trivial task because:
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• As shown in Figure 6.3, we have to unfold both definitions of integralC and e,

and fuse them together by performing beta reductions and substitutions, before

we actually spot the “knot” that should be tied, namely, f dt .

• The standard call-by-need evaluation implemented by most interpreters and

compilers for a lazy language does not do this.

• It is also difficult for a compile-time analysis to automate the unfolding steps

like those in Figure 6.3 and then “tie-the-knot” because there is no knowledge

of when to stop unfolding recursive definitions before a “loose knot” can be

discovered, and the time complexity to do this is quadratic (O(n2)) with respect

to the number of beta redices n.

Since a similar space leak (or loss of sharing) problem of ODE implementations has

been discussed in Chapter 5, it is interesting to compare the leak problem of conven-

tional FRP implementations to it:

• The D a type used to model ODE is a stream of derivatives, while the type B a

(or the continuation based C a) models a stream of time-based samples.

• The init operator for ODE represents an integral relationship, but it does

not implement the actual integration method like the operator integralC (or

integralB) for FRP.

• The leak in ODE is exposed by traversals of recursive data structures, and

can be avoided by turning the recusive data representation into a non-recursive

one with arrow combinators; whereas the leak in FRP is caused by subsequent

sampling of an infinite stream that is recursively defined.
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In a lazy language like Haskell, however, infinite streams are always recursively de-

fined, and sampling them do not always result in unexpected space behavor. A key

observation is that in the definition of e, there are actually two levels of recursion,

one in integralC , another in e itself. More importantly in the definition of integralC ,

the recursion takes place under a lambda.

To further illustrate this last point, consider an alternative implementation below,

where we remove the abstraction of time as a parameter and use a global fixed dt

instead:

newtype S a = S a (S a)

integralS :: Double → S Double → S Double

integralS i (S x y) = S i (integralS (i + x ∗ dt) y)

Note that this S a becomes the same stream datatype we considered in the dataflow

DSL (Figure 4.1). It is easy to verify that with the above definition, sampling e =

integralS e will run in constant space and linear time.

In a real implementation of FRP, however, we cannot assume a fixed delta time,

even though that is the case in our much simplified implementations of evalB and

evalC . Hence we cannot get rid of the time abstraction. A pragmatic solution to

such kind of space leak problem is to memoize the function in question by caching

its evaluation results. This is the workaround taken by Hudak [2000], but has always

been considered as a hack since it requires impure operations.

More fundemantally, we ask the question whether we can avoid the “hazardous

knot”, i.e., a recursive reference to a function application? The answer is yes, as

illustrated by an arrow based implementation that is at the core of Yampa.
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6.2 Yampa and CCA

6.2.1 Signal Function

Yampa, the latest variation in FRP implementations, makes use of the Arrow class

as an abstraction for signal functions, which conceptually can be viewed as:

SF a b ≈ Signal a→ Signal b

This is a very similar abstraction to the stream function (also called SF ) discussed

in Section 4.3. Programming at the level of signal functions instead of signals offers

similar advantages to that of the stream functions. But in addition, as we shall see,

it results in generally fewer space leaks.

Following the continuation style, a signal function is a function that, given the

current input, produces a pair consisting of its current output and a continuation:

newtype SF a b = SF (a → (b,DTime → SF a b))

The full definition of SF as an arrow, a definition of an integral function, and the

definition of an evalSF function, is given in Figure 6.4.

Our running example of an exponential signal can be defined as a signal function

using the arrow syntax as follows:

eSF :: SF () Double

eSF = proc ()→ do

rec e ← integralSF 1−≺ e

returnA−≺ e
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newtype SF a b = SF (a → (b,DTime → SF a b))

instance Arrow SF where

arr f = SF h where h x = (f x , λdt → arr f )

first (SF f ) = SF h where h (x , z ) = let (y , f ′) = f x

in ((y , z ), first . f ′)

SF f ≫ SF g = SF h where h x = let (y , f ′) = f x

(z , g ′) = g y

in (z , λdt → f ′ dt ≫ g ′ dt)

instance ArrowLoop SF where

loop (SF f ) = SF h where h x = let ((y , z ), f ′) = f (x , z )

in (y , loop . f ′)

integralSF :: Double → SF Double Double

integralSF i = SF h where h x = (i , λdt → integralSF (i + dt ∗ x ))

evalSF :: SF () Double → t → Double

evalSF sf t = sampleSF sf !! (truncate (t / dt))

sampleSF :: SF () Double → [Double ]

sampleSF (SF f ) = let (v , c) = f () in v : run (c dt)

Figure 6.4: Arrow-Based FRP
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Note that the input (on the right) and output (on the left) to the signal function

integralSF 1 is the same (namely e), and thus this is a circular signal. This program

expands into a combinator form as follows:

eSF = loop (second (integralSF 1) ≫ arr (λ(x , i)→ (i , i)))

Unfolding sampleSF eSF in GHC gives the expected time and space behavior without

any leaks. The key different here is that eSF is no longer recursively defined, i.e.,

we no longer have any recursive reference, or a “knot”, to tie when we unfold the

body of integralSF , even though there is still a lambda taking a parameter of dt in

its definition.

The arrow loop combinator provides a recusion in eSF is only at the value level,

but not at the arrow level. If we do not use loop, we can still define eSF like this:

êSF = êSF ≫ integralSF 1

It is perhaps surprising that the above definition works at all since it represents an infi-

nite network of arrows. The magic of lazy evaluation does the trick, and sampleSF êSF

actually produces the correct sequence. But unfortunately, this definition suffers from

the same time and space leak problem that we saw previously. This is not a coin-

cident, but due to the fact that êSF is using Haskell’s default fixed point operator.

Therefore, the ability to introduce a loop combinator as an alternative to do recursion

for arrows at the value level allows more precise control over what to recurse and what

not do, and hence avoids space leaks.
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6.2.2 Unifying Discrete and Continuous Time

We notice that integralSF in Figure 6.4 indeed shares a very similar type signature

to the init operator in CCA, and if we try to define what it means denotationally,

it is indeed the same as the init operator for ODE arrow. The problem, however,

is that in a dataflow language such as the arrow based DSL shown in Figure 4.2,

init is already given the meaning of a unit delay. If we want to capture both the

unit delay (discrete-time) and integral (continuous-time) aspects of FRP into a single

CCA framework, we have to make use of the multi-sort init extension.

A DSL for the core FRP language consisting of init , integral , and the rest of CCA

combinators corresponds to CCA†
2, where init0 = init , and init1 = integral .

By Theorem 3.5.2, the normal form for CCA†
2 is either arr f , or loop (arr f ≫

second (init i ⋆⋆⋆ integral j )) for some pure function f , and initial states i and j , where

i represents the state for discrete signals, and j represents the state for continuous

ones. We denote the CCNF tuple ((i , j ), f ) for CCA†
2 as CCNF 2, and capture it as a

generalized algebraic datatype below:

data CCNF 2 a b where

CCNF 2 :: (VectorSpace DTime d ,Num d)⇒

((c, d), (a, (c, d))→ (b, (c, d)))→ CCNF 2 a b

Here we use the VectorSpace class from Chapter 5 to indicate that the state for a

continuous signal is indeed a vector that can be integrated over Time.

As illustrated in Chapter 4 and Chapter 5, the transformation of CCA programs

is at the source level, and it is up to the programmer to define the semantical function

for a CCNF 2 value. To do this for Yampa, we incorporate both the single unit delay
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and the euler integration rule in our evaluation function as follows, assuming we still

use a global time step dt :

evalCCNF2
:: CCNF 2 () a → Time → a

evalCCNF2
(CCNF 2 ((i , j ), f )) t = run i j !! (truncate (t / dt))

where run i j = let (y , (i1 , j ′)) = f ((), (i , j ))

j1 = euler dt j j ′

in y : run i1 j1

In addition to evalCCNF2
, we can define a reactimate function for CCNF 2 mimicing

the reactimate of Yampa that we saw in Chapter 2 as follows:

reactimateCCNF2
:: IO (DTime, a)→ (b → IO ())→ CCNF 2 a b → IO ()

reactimateCCNF2
sense actuate (CCNF 2 ((i , j ), f )) = run i j

where run i j = do

(dt , x )← sense

let (y , (i1 , j ′)) = f (x , (i , j ))

j1 = euler dt j j ′

actuate y

run i1 j1

In a similar way to implementing an operational semantics based on CCNF tuples for

the dataflow DSL in Chapter 4, we have now implemented an operational semantics

for the Yampa language based on CCNF 2.
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6.3 Discussion

6.3.1 Dynamic Structure and Switch

As mentioned in Chapter 2, Yampa programs can dynamically react to external events

by using switches. Since our implementation of CCA normalization is at compile-time

only, it is not possible to support the kind of complete dynamism enabled by the

switches. One indication of this limitation is in the CCNF itself: the internal state i

is given a static type, which effective means a CCNF cannot modify its own structure

at run-time, while the general Yampa arrow such as the SF data type can.

A limited form of dynamic structure can be supported, however, if we implement

the switch function as part of the dynamic semantics:

switchCCNF2
:: CCNF 2 a (b,Event c)→ (c → CCNF 2 a b)→ S a → S b

We leave out the actual implementation, but would like to remark that switchCCNF2
is

not composable and only at the top level, while the original Yampa switch is perfectly

composable and can be used at any level during a composition since it returns an SF

arrow as result.

Another possible work-around is not to use CCNF tuples such as the CCNF 2

data type but just the normalized CCNF in its arrow form, which can then be used

afterwards just like any other arrow. Early benchmarks in Section 4.6 and Section 5.5

suggest that just going CCNF is worthwhile, although we would lose some of advanced

optimizations specific to CCNF tuples. On the other hand we can still retain the

flexibility of a full Yampa arrow.

A fully dynamic switch has the ability to compose the arrow to be switched into
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at runtime, and so far our CCA implementation is not able to handle such a case.

On the other hand, not all arrows to be switched into are dynamically composed,

and often the handler function simply takes a parameter and produces an arrow still

of a static structure, such as the bouncing ball example considered in Section 2.2.2,

and hence there is no problem of making compile-time CCA normalization work with

switches in such cases.

6.3.2 Space Leak and Evaluation Strategy

With our discussion on the space leak problem both in this chapter and in Chapter 5,

it appears that the loss of sharing of function applications during either the traversal

or unfolding of a recursive data structure is the root cause. In both cases we propose

restructuring the DSL under the arrow framework could resolve the leak, which may

not seem like a very general solution to the problem. After all, not all DSLs can be

framed as arrows.

The inability to maintain sharing of function application is a fundamental issue

inherent to the algorithm of call-by-need. By improving call-by-need, lambda eval-

uation strategies such as complete or optimal laziness can help recover lost sharing,

but they are (so far) costly to implement, and generally not very well understood

in terms of space and time complexity [Lamping, 1990, Asperti and Guerrini, 1998,

Thyer, 1999, Sinot, 2008].

Lévy [1978] introduced the notion of optimal reduction, and Lamping [1990] is

the first to invent an optimal reducer for the lambda calculus. Asperti and Guerrini

[1998] summarize optimal reduction as:
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Table 6.1: Reduction Steps of Unfolding en = sampleC e !! n

Exp Call-by-need Optimal

beta arithmetic beta arithmetic

e1 13 2 11 2

e2 28 4 16 4

e3 50 12 21 6

e4 79 20 26 8

e5 115 30 31 10

e6 158 42 36 12

e7 208 56 41 14

lambda calculus = linear lambda calculus + sharing

The purpose of optimal reduction is to carefully keep track of all shared structures

so that redundant reductions never occur.

In fact, optimal reduction is able to recover all forms of sharing as long as it is

encoded in the original expression. Verified by our own implementation [Liu, 2009]

of both Lambdascope [van Oostrom et al., 2004], an optimal algorithm, and the

standard call-by-need algorithm using Interaction Nets, we present the comparison

of the number of beta reductions and arithmetic operations 2 during the unfolding of

en = (sampleC e) !! n in Table 6.1.

The data confirms that the time complexity of unfolding en under call-by-need is

2The only arithmetic operation that we count is the calculation of dt ∗ i + j , and we count it as

2 operations.
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quadratic, because it redundantly re-evaluates en−1. We have:

stepscbn(n) ≈ stepsopt(n) + stepscbn(n− 1)

where stepscbn and stepsopt respectively stand for the number of reductions for call-

by-need and for optimal to unfold en, and stepsopt(n) is apparently linear in n as

indicated by Table 6.1.

On the other hand, being optimal does not necessarily imply being the most

efficient. The extra book-keeping of sharing analysis during optimal evaluation incurs

a large operational overhead of both time and space. Compared to the relatively well-

developed call-by-need compilation techniques, optimal evaluation is far less explored,

and no truly practical implementations yet exist.
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Chapter 7

Conclusion and Future Work

We have formulated causal commutative arrows (CCA), an extension to the arrows

framework, and its associated laws, and designed a language for CCA that is strongly

normalizing. We give the normalization procedure and prove that it is sound and

always terminating. The normalization property of CCA leads to an effective compile-

time optimization technique that can help improving the run-time performance of

such arrows by orders of magnitude. CCA captures the essence of causal stream

computation and synchronous dataflow, and its normal form has a close relation to

the operational semantics of dataflow languages defined by Mealy machines. Arrows

and CCA are also used to model a DSL for ordinary differential equations (ODE)

that not only improves performance but also resolves a space leak problem. Finally,

CCA with a multi-sort init extension is shown to be a good abstraction for the core

of Yampa, a functional reactive programming (FRP) language that models hybrid

systems with both discrete and continuous components, even though CCA does not

model the dynamic mode switching of Yampa programs.
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In both Chapter 4 and Chapter 5, we make use of a number of micro-benchmarks

to demonstrate the effectiveness of CCA optimization. It is our future work to explore

the application of CCA in larger applications and under more complicated but real-

world settings. In fact we are already doing it in the on-going development of Euterpea

[Hudak et al., 2010]. Euterpea is a Haskell software library suitable for high-level

music representation, algorithmic composition and analysis, mid-level concepts such

as MIDI, and low-level audio processing, sound synthesis, and instrument design.

We use an arrow based DSL for sound synthesis and signal processing that can be

considered an instance of CCA. Preliminary results are already showing that we can

achieve real-time synthesis in a Haskell program with a performance comparable to

C-based implementations. More work still has to be done in order to fully evaluate

the use of CCA normalization as an optimization technique in Euterpea.

Our implementation of CCA normalization is done at compile-time with the help

from Template Haskell, which brings both conveniences as well as restrictions that put

burdens on programmer. Not all the power of Template haskell is needed, however,

and therefore it may be worth exploring alternative meta-programming approaches

that provide the kind of program transformation needed by CCA, namely, the inlining

of function definitions. It may also be worth exploring run-time alternatives such as

a just-in-time (JIT) compiler with the ability to dynamically generate optimized run-

time binary code for CCA.

With regard to optimization through CCA normalization, we also rely on advanced

compilation offered by modern Haskell compilers such as GHC to further optimize the

normal form using techniques like strictness analysis, unboxing data types, currying

arguments, and function inlining. As mentioned in Section 4.7, GHC’s behavior in
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this regard is not completely tunable by programmers, and if possible we would like

to have a separate module that output highly efficient source-level programs and give

programmers more control over the process.

The only side-effect we have considered in CCA is brought by the init operator,

and because of the commutativity law, such effects are non-interfering and isolated.

Besides the operation of unit delay and numerical integration, we could also consider

concurrent I/O operations that communicate with the environment but are oblivi-

ous to each other. For example, reading keyboard inputs is entirely independent to

sending packets to the network interface. Currently the preferred way of a Yampa

program to interact with the environment is through the reactimate function, but

such a concurrent I/O extension would offer a much richer set of operators to work

with, and perhaps even a fresh new way of I/O programming in FRP.
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Appendix A

Benchmark Programs

The benchmark programs used in Table 4.1 are given below.

sr = 44100 :: Int

sine :: ArrowInit a ⇒ Double → a () Double

sine freq = proc → do

rec x ← init i−≺ r

y ← init 0−≺ x

let r = c ∗ x − y

returnA−≺ r

where

omh = 2 ∗ pi / (fromIntegral sr) ∗ freq

i = sin omh

c = 2 ∗ cos omh

fibs :: ArrowInit a ⇒ a () Int

fibs = proc → do
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rec f ← init 0−≺ g

g ← init 1−≺ (f + g)

returnA−≺ f

ones :: ArrowInit a ⇒ a () Int

ones = arr (λ → 1)

sum = proc x → do

rec s ← init 0−≺ s + x

returnA−≺ s

nats = proc x → do

y ← ones−≺ x

z ← sum−≺ y

returnA−≺ z

fact :: ArrowInit a ⇒ a () Integer

fact = proc x → do

n ← nats−≺ x

rec f ← init 1−≺ f ∗ fromIntegral (n + 1)

returnA−≺ f

type Event = Maybe

hold i = proc e → do

rec y ← init i−≺ z

let z = maybe y id e

returnA−≺ z
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dHold i = proc e → do

y ← hold i−≺ e

z ← init i−≺ y

returnA−≺ z

tag :: Event a → b → Event b

tag e v = fmap (λ → v) e

accum i = proc f → do

rec s ← init i−≺ t

let t = (maybe id id f ) s

returnA−≺ f ‘tag ‘ t

dAccumHold i = proc f → do

x ← accum i−≺ f

y ← dHold i−≺ x

returnA−≺ y

gate :: Event a → Bool → Event a

‘gate‘ False = Nothing

e ‘gate ‘ True = e

boundedCounter max = proc incReq → do

rec n ← dAccumHold 0−≺ incCount

let incCount = (incReq ‘gate‘ (n < max)) ‘tag ‘ (+1)

returnA−≺ n

bcinput :: ArrowInit a ⇒ a () (Event ())
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bcinput = proc ()→ do

rec t ← init False−≺ ¬ t

returnA−≺ Just () ‘gate ‘ t

boundedCounterTest :: ArrowInit a ⇒ a () Int

boundedCounterTest = altTrue ≫ boundedCounter 100

When conducting the benchmarks using the Criterion benchmark package, we unfold

sine 2 to its 10000th sample, fibs to 37th (before hitting the max 32-bit signed integer),

fact to 100th, and boundedCounterTest to 100th.
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Appendix B

Proofs

B.1 The sequencing rule of loopD

The sequencing rule from Figure 3.4 is directly derivable from the following equation:

loopD i f ≫ loopD j g = loopD (i , j ) (assoc ′ (juggle ′ (g × id) . (f × id)))

In order to show the above is true, we first prove three lemmas.

Lemma B.1.1 Given a function definition revjuggle (a, (b, c)) = (b, (a, c)), we show

that for all f :

second (second f ) = arr revjuggle ≫ second (second f ) ≫ arr revjuggle

Proof

We start from the left-hand side by equational reasoning.

lhs

= second (second f )
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definition of second

= arr swap ≫ first (arr swap ≫ first f ≫ arr swap) ≫ arr swap

functor of first , extension of first

= arr swap ≫ arr (swap × id) ≫ first (first f ) ≫ arr (swap × id) ≫ arr swap

identity of arr , id = assoc−1 . assoc, and composition of arr

= arr swap ≫ arr (swap × id) ≫ first (first f ) ≫ arr assoc ≫ arr assoc−1

≫ arr (swap × id) ≫ arr swap

association of first

= arr swap ≫ arr (swap × id) ≫ arr assoc ≫ first f ≫ arr assoc−1

≫ arr (swap × id) ≫ arr swap

composition of arr

= arr (assoc . (swap × id) . swap) ≫ first f ≫ arr (swap . swap × id . assoc−1)

unfold function definition and beta reduce

= arr (λ(a, (b, c))→ (c, (a, b))) ≫ first f ≫ arr (λ(c, (a, b))→ (a, (b, c)))

Then from the right-hand side:

rhs

= arr revjuggle ≫ second (second f ) ≫ arr revjuggle

definition of second

= arr revjuggle ≫ arr swap ≫ first (arr swap ≫ first f ≫ arr swap)

≫ arr swap ≫ arr revjuggle

functor of first , extension of first

= arr revjuggle ≫ arr swap ≫ arr (swap × id) ≫ first (first f )

≫ arr (swap × id) ≫ arr swap ≫ arr revjuggle
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identity of arr , id = assoc−1 . assoc, and composition of arr

= arr revjuggle ≫ arr swap ≫ arr (swap × id) ≫ first (first f )

≫ arr assoc ≫ arr assoc−1 ≫ arr (swap × id) ≫ arr swap

≫ arr revjuggle

association of first

= arr revjuggle ≫ arr swap ≫ arr (swap × id) ≫ arr assoc ≫ first f

≫ arr assoc−1 ≫ arr (swap × id) ≫ arr swap ≫ arr revjuggle

composition of arr

= arr (assoc . swap × id . swap . revjuggle) ≫ first f

≫ arr (revjuggle . swap . swap × id . assoc−1)

unfold function definition and beta reduce

= arr (λ(a, (b, c))→ (c, (a, b))) ≫ first f ≫ arr (λ(c, (a, b))→ (a, (b, c)))

Therefore, lhs = rhs. 2

Lemma B.1.2 We show that for all f and g:

second (first f ) ≫ arr (assoc . swap) = arr (assoc . swap) ≫ first f

Proof

We start from the left-hand side by equational reasoning:

lhs

= second (first f ) ≫ arr (assoc . swap)

definition of second

= arr swap ≫ first (first f ) ≫ arr swap ≫ arr (assoc . swap)

identity of arr , id = assoc−1 . assoc, and composition of arr
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= arr swap ≫ first (first f ) ≫ arr assoc ≫ arr assoc−1 ≫ arr swap

≫ arr (assoc . swap)

association of first

= arr swap ≫ arr assoc ≫ first f ≫ arr assoc−1 ≫ arr swap

≫ arr (assoc . swap)

composition of arr

= arr (assoc . swap) ≫ first f ≫ arr (assoc . swap . swap . assoc−1)

identity of arr , id = assoc . swap . swap . assoc−1

= arr (assoc . swap) ≫ first f 2

Lemma B.1.3 We show that for all f :

first f = arr revjuggle ≫ second (first f ) ≫ arr revjuggle

Proof

We start from the right-hand side by equational reasoning:

rhs

= arr revjuggle ≫ second (first f ) ≫ arr revjuggle

definition of second

= arr revjuggle ≫ arr swap >> first (first f ) ≫ arr swap ≫ arr revjuggle

identity of arr , id = assoc−1 . assoc, and composition of arr

= arr revjuggle ≫ arr swap >> first (first f ) ≫ arr assoc ≫ arr assoc−1

≫ arr swap ≫ arr revjuggle

association of first

= arr revjuggle ≫ arr swap >> arr assoc ≫ first f ≫ arr assoc−1
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≫ arr swap ≫ arr revjuggle

identity of arr , id = id × swap . id × swap, and composition of arr

= arr revjuggle ≫ arr swap >> arr assoc ≫ arr (id × swap)

≫ arr (id × swap) ≫ first f ≫ arr assoc−1

exchange of first

= arr revjuggle ≫ arr swap >> arr assoc ≫ arr (id × swap) ≫ first f

≫ arr (id × swap) ≫ arr assoc−1

composition of arr

= arr (id × swap . assoc . swap . revjuggle) ≫ first f

≫ arr (revjuggle . swap . assoc−1 . id × swap)

identity of arr , id = id × swap . assoc . swap . revjuggl

and id = revjuggle . swap . assoc−1 . id × swap

= first f 2

We then show that

loopD i f ≫ loopD j g = loopD (i , j ) (assoc ′ (juggle ′ (g × id) . (f × id)))

holds by equational reasoning, starting from the left-hand side:

loopD i f ≫ loopD j g

definition of loopD

= loop (arr f ≫ second (init i)) ≫ loop (arr g ≫ second (init j ))

left tightening of loop

= loop (first (loop (arr f ≫ second (init i))) ≫ (arr g ≫ second (init j )))

definition of second
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= loop (arr swap ≫ second (loop (arr f ≫ second (init i))) ≫ arr swap

≫ (arr g ≫ second (init j )))

superposing of loop

= loop (arr swap ≫ loop (arr assoc ≫ second (arr f ≫ second (init i))

≫ arr assoc−1) ≫ arr swap ≫ (arr g ≫ second (init j )))

left tightening of loop

= loop (loop (first (arr swap) ≫ arr assoc ≫ second (arr f ≫ second (init i))

≫ arr assoc−1) ≫ arr swap ≫ (arr g ≫ second (init j )))

extension of first

= loop (loop (arr (swap × id) ≫ arr assoc ≫ second (arr f ≫ second (init i))

≫ arr assoc−1) ≫ arr swap ≫ (arr g ≫ second (init j )))

associativity of ≫

= loop (loop (arr (swap × id) ≫ arr assoc ≫ second (arr f ≫ second (init i))

≫ arr assoc−1) ≫ (arr swap ≫ arr g ≫ second (init j )))

right tightening of loop

= loop (loop (arr (swap × id) ≫ arr assoc ≫ second (arr f ≫ second (init i))

≫ arr assoc−1 ≫ first (arr swap ≫ arr g ≫ second (init j ))))

vanishing of loop

= loop (arr assoc−1 ≫ arr (swap × id) ≫ arr assoc ≫ second (arr f

≫ second (init i)) ≫ arr assoc−1 ≫ first (arr swap ≫ arr g

≫ second (init j )) ≫ arr assoc)

identity of arr , id = id × swap . id × swap, composition of arr

= loop (arr (id × swap) ≫ arr (id × swap) ≫ arr assoc−1 ≫ arr (swap × id)
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≫ arr assoc ≫ second (arr f ≫ second (init i)) ≫ arr assoc−1

≫ first (arr swap ≫ arr g ≫ second (init j )) ≫ arr assoc)

sliding of loop

= loop (arr (id × swap) ≫ arr assoc−1 ≫ arr (swap × id) ≫ arr assoc

≫ second (arr f ≫ second (init i)) ≫ arr assoc−1 ≫ first (arr swap

≫ arr g ≫ second (init j )) ≫ arr assoc ≫ arr (id × swap))

composition of arr , swap . assoc−1 = assoc . (swap × id) . assoc−1 . (id × swap)

= loop (arr (swap . assoc−1) ≫ second (arr f ≫ second (init i)) ≫ arr assoc−1

≫ first (arr swap ≫ arr g ≫ second (init j )) ≫ arr assoc

≫ arr (id × swap))

definition of second

= loop (arr (swap . assoc−1) ≫ second (arr f ≫ arr swap ≫ first (init i)

≫ arr swap) ≫ arr assoc−1 ≫ first (arr swap ≫ arr g

≫ second (init j )) ≫ arr assoc ≫ arr (id × swap))

definition of first

= loop (arr (swap . assoc−1) ≫ second (arr f ≫ arr swap ≫ first (init i)

≫ arr swap) ≫ arr assoc−1 ≫ arr swap ≫ second (arr swap ≫ arr g

≫ second (init j )) ≫ arr swap ≫ arr assoc ≫ arr (id × swap))

functor and extension of second

= loop (arr (swap . assoc−1) ≫ second (arr (swap . f )) ≫ second (first (init i))

≫ arr (id × swap) ≫ arr assoc−1 ≫ arr swap ≫ arr (id × swap)

≫ second (arr g) ≫ second (second (init j )) ≫ arr swap ≫ arr assoc

≫ arr (id × swap))
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Lemma B.1.1

= loop (arr (swap . assoc−1) ≫ second (arr (swap . f )) ≫ second (first (init i))

≫ arr (id × swap) ≫ arr assoc−1 ≫ arr swap ≫ arr (id × swap)

≫ second (arr g) ≫ arr revjuggle ≫ second (second (init j ))

≫ arr revjuggle ≫ arr swap ≫ arr assoc ≫ arr (id × swap))

composition of arr , id = (id × swap) . assoc . swap . revjuggle, identity of arr

= loop (arr (swap . assoc−1) ≫ second (arr (swap . f )) ≫ second (first (init i))

≫ arr (id × swap) ≫ arr assoc−1 ≫ arr swap ≫ arr (id × swap)

≫ second (arr g) ≫ arr revjuggle ≫ second (second (init j )))

composition of arr, assoc . swap = (id × swap) . swap . assoc−1 . (id × swap)

= loop (arr (swap . assoc−1) ≫ second (arr (swap . f )) ≫ second (first (init i))

≫ arr (assoc . swap) ≫ second (arr g) ≫ arr revjuggle

≫ second (second (init j )))

Lemma B.1.2

= loop (arr (swap . assoc−1) ≫ second (arr (swap . f )) ≫ arr (assoc . swap)

≫ first (init i) ≫ second (arr g) ≫ arr revjuggle

≫ second (second (init j )))

commutativity

= loop (arr (swap . assoc−1) ≫ second (arr (swap . f )) ≫ arr (assoc . swap)

≫ second (arr g) ≫ first (init i) ≫ arr revjuggle

≫ second (second (init j )))

Lemma B.1.3

= loop (arr (swap . assoc−1) ≫ second (arr (swap . f )) ≫ arr (assoc . swap)
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≫ second (arr g) ≫ arr revjuggle ≫ second (first (init i))

≫ arr revjuggle ≫ arr revjuggle ≫ second (second (init j )))

composition of arr , id = revjuggle . revjuggle, identity of arr

= loop (arr (swap . assoc−1) ≫ second (arr (swap . f )) ≫ arr (assoc . swap)

≫ second (arr g) ≫ arr revjuggle ≫ second (first (init i))

≫ second (second (init j )))

extension of second , composition of arr

= loop (arr (revjuggle . (id × g) . assoc . swap . id × (swap . f ) . swap . assoc−1)

≫ second (first (init i)) ≫ second (second (init j )))

assoc ′ (juggle ′ (g × id) . (f × id)) = revjuggle . (id × g) .

assoc . swap . id × (swap . f ) . swap . assoc−1

= loop (arr (assoc ′ (juggle ′ (g × id) . (f × id))) ≫ second (first (init i))

≫ second (second (init j )))

functor of second

= loop (arr (assoc ′ (juggle ′ (g × id) . (f × id))) ≫ second (first (init i)

≫ second (init j )))

product of init

= loop (arr (assoc ′ (juggle ′ (g × id) . (f × id))) ≫ second (init (i , j )))

2
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