
An Ode to Arrows

Hai Liu Paul Hudak

Department of Computer Science
Yale University

New Haven, CT 06520, U.S.A.
{hai.liu,paul.hudak}@yale.edu

Abstract. We study a number of embedded DSLs for autonomous or-
dinary differential equations (autonomous ODEs) in Haskell. A naive
implementation based on the lazy tower of derivatives is straightforward
but has serious time and space leaks due to the loss of sharing when
handling cyclic and infinite data structures. In seeking a solution to fix
this problem, we explore a number of DSLs ranging from shallow to
deep embeddings, and middle-grounds in between. We advocate a so-
lution based on arrows, an abstract notion of computation that offers
both a succinct representation and an effective implementation. Arrows
are ubiquitous in their combinator style that happens to capture both
sharing and recursion elegantly. We further relate our arrow-based DSL
to a more constrained form of arrows called causal commutative arrows,
the normalization of which leads to a staged compilation technique im-
proving ODE performance by orders of magnitude.

1 Introduction

Consider the following stream representation of the “lazy tower of derivatives”
[9] in Haskell:

data D a = D {val :: a, der :: D a } deriving (Eq ,Show)

Mathematically it represents an infinite sequence of derivatives f(t0), f ′(t0),
f ′′(t0), . . . , f (n)(t0), . . . for a function f that is continuously differentiable at
some value t0. This representation has been used frequently in a technique called
Functional Automatic Differentiation The usual trick in Haskell is to make D a
an instance of the Num and Fractional type classes, and overload the mathemat-
ical operators to simultaneously work on all values in the tower of derivatives:

instance Num a ⇒ Num (D a) where
D x x ′ + D y y ′ = D (x + y) (x ′ + y ′)
u@(D x x ′) ∗ v@(D y y ′) = D (x ∗ y) (x ′ ∗ v + u ∗ y ′)
negate (D x x ′) = D (−x) (−x ′)
...

Sine wave y′′ = −y y = init y0 y ′

y ′ = init y1 (−y)

Damped oscillator y′′ = −cy′ − y y = init y0 y ′

y ′ = init y1 (−c ∗ y ′ − y)

Lorenz attractor x′ = σ(y − x) x = init x0 (σ ∗ (y − x))
y′ = x(ρ− z)− y y = init y0 (x ∗ (ρ− z)− y)
z′ = xy − βz z = init z0 (x ∗ y − β ∗ z)

Fig. 1. A few ODE examples

1.1 Autonomous ODEs and the Tower of Derivatives

Our first contribution is a simple but novel use of the “lazy tower of deriva-
tives” to implement a domain specific language (DSL) for autonomous ordinary
differential equations (autonomous ODEs). Mathematically, an equation of the
form:

f (n) = F (t, f, f ′, . . . , f (n−1))

is called an ordinary differential equation of order n for an unknown function
f(t), with its nth derivative described by f (n), where the types for f and t are
R → R and R respectively. A differential equation not depending on t is called
autonomous. An initial value problem of a first order autonomous ODE is of the
form:

f ′ = F (f) s.t. f(t0) = f0

where the given pair (t0, f0) ∈ R×R is called the initial condition. The solution
to a first-order ODE can be stated as:

f(t) =
∫

f ′(t)dt + C

where C is the constant of integration, which is chosen to satisfy the initial
condition f(t0) = f0.

In Haskell we represent the above integral operation as init that takes an
initial value f0:

init :: a → D a → D a
init = D

As an example, consider the simple ODE f ′ = f , whose solution is the well
known exponential function, and can be defined in terms of init :

e = init 1 e

which is a valid Haskell definition that evaluates to a concrete value, namely, a
recursively defined tower of derivatives, starting from an initial value of 1, with
its derivative equal to itself.

In general, by harnessing the expressive power of recursive data types and
overloaded arithmetic operators, we can directly represent autonomous ODEs

(a) cyclic structure (b) infinite structure

Fig. 2. Two structural diagrams for e

as a set of Haskell definitions. We give a few more examples in Figure 1. Note
that in the sine wave and damped oscillator examples, we translate higher-order
ODEs into a system of first-order equations.

The solution to the initial value problem of an ODE can often be approx-
imated by numerical integration. Here is a program that integrates a tower of
derivatives at t0 to its next step value at t0 + h using the Euler method:

euler :: Num a ⇒ a → D a → D a
euler h f = D (val f + h ∗ val (der f)) (euler h (der f))

The function euler lazily traverses and updates every value in the tower of deriva-
tives by their next step values. By repeatedly applying euler , we can sample the
approximate solution to an ODE:

sample :: Num a ⇒ a → D a → [a]
sample h = map val . iterate (euler h)

For instance, evaluating sample 0.001 e generates an infinite sequence of the
exponential function exp(t) sampled at a 0.001 interval starting from t = 0:

[1.0, 1.001, 1.002001, 1.003003001, 1.004006004001, ...

1.2 Time and Space Leaks

Thus far, we have designed a DSL embedded in Haskell for autonomous ODEs.
However, our DSL, despite its elegant implementation, has but one problem: the
numerical solver has serious time and space leaks. For instance, unfolding the
sequence sample 0.001 e in GHCi exhibits a quadratic time behavior instead of
linear. Evaluating more complex definitions than e can exhibit even worse leaks.

The problem is that data sharing is lost when we update a recursive structure
[10]. In a lazy and pure functional setting, cyclic and infinite data structures are
indistinguishable when they semantically denote the same value, as illustrated
in Figure 2. Usually an implementation of a lazy language allows one to “tie
the knot” using recursive definitions such as e = init 1 e, which would create

an internal data structure as pictured in Figure 2(a). This kind of knot tying,
however, is very limited, and even the simplest traversal like the one below loses
sharing:

id (D v d) = D v (id d)

When evaluating id e, a lazy (call-by-need) strategy fails to recognize that in the
unfolding of id e = id (D 1 e) = D 1 (id e), the last and first occurrences of id e
could share the same value, and therefore produces something like in Figure 2(b).
Repeatedly evaluating an update function such as euler on a recursively defined
value of type D a will force unfolding the structure indefinitely, and hence create
leaks both in space and time.

In the remainder of this paper we embark on a journey seeking the best way
to implement our DSL for ODEs with varying degrees of embedding. Specifically,
our paper makes the following contributions:

1. We study the problem of handling cyclic and infinite structures by analyzing
different DSL representations and implementations, from shallow to deep
embeddings, and mid-grounds in between.

2. We present an arrow-based DSL that captures sharing implicitly but without
the usual deficiency of having to observe and compare equivalences using tags
or references. Additionally the use of arrow notation [15] enables succinct
syntax for ODEs.

3. We illustrate that sharing and recursion in an object language can be better
captured by arrows than higher-order abstract syntax (HOAS), even though
both are mixing shallow and deep embeddings.

4. We make use of the arrow properties, and specifically the normal form of
causal commutative arrows (CCA) [11], to compile our DSL and eliminate
all overhead introduced by the abstraction layer.

2 Sharing of Computation

2.1 A Tagged Solution

To distinguish cyclic from infinite data structures, we can make the sharing of
sub-structures explicit by labeling them with unique tags [14]. The traversal of
a tagged structure must keep track of all visited tags and skip those that are
already traversed in order to avoid endless loops.

It must be noted, however, that not all infinite data structures can be made
cyclic. This can be demonstrated by the multiplication of two towers of deriva-
tives x, x′, . . . , x(m−1), . . . and y, y′, . . . , y(n−1), . . . , which produces the following
sequence:

xy
x′y + xy′

x′′y + x′y′ + x′y′ + xy′′

. . .

Even if both sequences of x and y are cyclic (x(i) = x(i mod m), y(j) = y(j mod n),
for all i ≥ m, j ≥ n), the resulting sequence does not necessarily have a repeating
pattern that loops over from the beginning, or any part in the middle. Therefore
merely adding tags to the tower of derivatives is not enough; we need to represent
mathematical operations symbolically so that they become part of the data
structure and hence subject to traversal as well. For instance:

data C a = CI a (T a) -- init operator
| C1 Op (T a) -- unary arithmetic
| C2 Op (T a) (T a) -- binary arithmetic

type T a = Tag (C a)
data Tag a = Tag Int a
type Op = String

This is a simple DSL that supports initialization (CI) in addition to both unary
(C1) and binary (C2) operations. Since every node in a (T a) structure is
tagged, we can easily detect sharing or cycles by comparing tags. There are
different ways to generate unique tags; we follow Bjesse et al. [2] and use a state
monad: 1

type M a = State Int (T a) -- monad that returns T a
newtag :: State Int Int -- to get fresh new tag
newtag = modify (+1) >> get
tag :: C a → M a -- tag a node with new tag
tag x = newtag >>= λi → return (Tag i x)
initT :: a → T a → M a -- init with a new tag
initT v d = tag (CI v d)

Since our DSL now represents all operations as part of its data structure, we
no longer need the chain rule to evaluate multiplication, and instead we just
represent it symbolically. Such a technique is often called deep embedding in
contrast to our first DSL, which is a shallow embedding since all its operators
are ordinary Haskell functions. We leave the rest of the implementation to our
readers.

With the same exponential example now defined as e = mfix (initT 1), 2

repeatedly sample its value in GHCi now exhibits linear time behavior, and runs
in constant space as one would have expected. By moving from shallow to deep
embedding, and with the help of tags, we are now able to recover sharing in the
interpretation of our tagged DSL.

2.2 Higher Order Abstract Syntax

Although the tagged solution successfully avoids space leaks, it is cumbersome
due to the overhead of generating and maintaining unique tags. One way to avoid
1 The State type and functions like modify and get are from the standard Haskell

module Control .Monad .State.
2 Function mfix computes the fixed point of a monad, and is of type MonadFix m ⇒

(a → m a)→ m a

dealing with tags is to mimic Let-expressions for sharing, and Letrec for recur-
sion. However, Let-expressions in the object language require variable bindings
and their interpretations. Indeed, variables are just lexically scoped tags, and
they are remembered in an environment instead of a state monad.

An alternative solution that avoids variable bindings in the object language
is to use higher-order abstract syntax (HOAS). For example, we may modify our
DSL to include both Let and Letrec as follows:

data H a = HI a (H a) -- init operator
| H1 Op (H a) -- unary operator
| H2 Op (H a) (H a) -- binary operator
| Let (H a → H a) (H a)
| LetRec (H a → H a)
| Var Int -- for internal use only

Where Let f x introduces the sharing of x in the result of f x , and LetRec f
introduces an explicit cycle in computing the fixed point of f . When traversing
Let and LetRec, however, we have to remember shared values for later lookups
in an environment. For this reason we need to use Var i to represents an index
i in such an environment. We leave the actual implementation of this DSL to
our readers.

Now we can define the same exponential ODE as LetRec (init 1) where
init = HI . But the real trouble comes when we want to update it in the euler
function. Here is a sample code snippet that updates a Let structure:

update env (Let f x) =
let x ′ = update env x

i = length env
f ′ y = update ((i , (y , valH env x)) : env) (f (Var i))

in Let f ′ x ′

The function update remembers shared values in an environment variable
env during a traversal. To update a value of Let f x is to create a new function
f ′ out of f in some way, and return Let f ′ x ′. In computing f ′ it must reference
the environment to get the shared value of x using valH env x . Therefore f ′ is
really a new closure. Since our host language Haskell is not able to introspect or
evaluate under lambdas, repeatedly updating HOAS structures in this way will
result in building larger and larger closures, and hence creating a new kind of
space leak. A possible remedy to this situation is memoization [12]. For example,
we can have a pair of conversion functions between the HOAS language and the
tagged language:

toT :: H a → T a
fromT :: T a → H a

Computation over H a can then be expressed in terms of computations over
T a. As a result of toT , the intermediate tagged structure is of fixed size (relative
to the input), and hence fromT will create a HOAS structure also of fixed size.

Unfortunately, this approach introduces considerably more runtime overhead
and begins to feel just as cumbersome as tagging. Therefore we consider HOAS
inadequate as a technique for object languages that require careful sharing.

For our next and final DSL, we represent then computation between deriva-
tives in an ODE as arrows. But before doing so, we first give an introduction to
arrows. Readers familiar with this topic may skip to Section 4.

3 An Introduction to Arrows

Arrows [8] are a generalization of monads that relax the stringent linearity im-
posed by monads, while retaining a disciplined style of composition. Arrows have
enjoyed a wide range of applications, often as an embedded DSL, including signal
processing [13], graphical user interface [4], and so on.

3.1 Conventional Arrows

Like monads, arrows capture a certain class of abstract computations, and offer
a way to structure programs. This is achieved through the Arrow type class:

class Arrow a where
arr :: (b → c)→ a b c
(≫) :: a b c → a c d → a b d
first :: a b c → a (b, d) (c, d)

The combinator arr lifts a function from b to c to a “pure” arrow computa-
tion from b to c, namely a b c where a is the arrow type. The output of a pure
arrow entirely depends on the input (it is analogous to return in the Monad
class). ≫ composes two arrow computations by connecting the output of the
first to the input of the second (and is analogous to bind ((>>=)) in the Monad
class). But in addition to composing arrows linearly, it is desirable to compose
them in parallel – i.e. to allow “branching” and “merging” of inputs and outputs.
There are several ways to do this, but by simply defining the first combinator
in the Arrow class, all other combinators can be defined. The combinator first
applies an arrow to the first part of the input, and the result becomes the first
part of the output. The second part of the input is fed directly to the second
part of the output.

Other combinators can be defined using these three primitives. For example,
the dual of first can be defined as:

second :: Arrow a ⇒ a b c → a (d , b) (d , c)
second f = arr swap ≫ first f ≫ arr swap

where swap (a, b) = (b, a)

Parallel composition can be defined as a sequence of first and second :

(???) :: Arrow a ⇒ a b c → a b′ c′ → a (b, b′) (c, c′)
f ??? g = first f ≫ second g

(a) arr f (b) f ≫ g (c) first f

(d) f ??? g (e) loop f

Fig. 3. Commonly used arrow combinators

To model recursion, we can introduces a loop combinator [15], which is cap-
tured in the ArrowLoop class.

class Arrow a ⇒ ArrowLoop a where
loop :: a (b, d) (c, d)→ a b c

We find that arrows are best viewed pictorially. Figure 3 shows some of the
basic combinators in this manner, including loop. A mere implementation of the
arrow combinators, of course, does not make it an arrow – the implementation
must additionally satisfy a set of Arrow and ArrowLoop laws, which are omitted
here for the lack of space. See [8, 15] for further details.

3.2 Arrow Notation

Arrow expressions we have seen so far maintain a point-free style that requires
explicit “plumbing” using arrow combinators, and may be obscure and inconve-
nient in some cases. Paterson [15] devises a set of arrow notation that help users
to express arrows in a “point-ful” style with improved presentation. Programs
written in such special syntax can be automatically translated by a pre-processor
back to the combinator form. GHC in fact has built-in support for arrow nota-
tions.

For space reasons we omit translation rules of arrow notation, and instead
we briefly explain through the example of the parallel composition ??? as follows:

(???) :: Arrow a ⇒ a b c → a b′ c′ → a (b, b′) (c, c′)
f ??? g = proc (x , y)→ do

x ′ ← f−≺ x
y ′ ← g−≺ y
returnA−≺ (x ′, y ′)

returnA :: Arrow a ⇒ a b b
returnA = arr (λx → x)

The proc keyword starts an arrow expression whose input is a pair (x , y), and
whose output is the output of the last command in the do-block. The do-block

Sine wave y′′ = −y proc ()→ do
rec y ← init y0−≺ y ′

y ′ ← init y1−≺ −y
returnA−≺ y

Damped oscillator y′′ = −cy′ − y proc ()→ do
rec y ← init y0−≺ y ′

y ′ ← init y1−≺ −c ∗ y ′ − y
returnA−≺ y

Lorenz attractor x′ = σ(y − x) proc ()→ do
y′ = x(ρ− z)− y rec x ← init x0−≺ σ ∗ (y − x)
z′ = xy − βz y ← init y0−≺ x ∗ (ρ− z)− y

z ← init z0−≺ x ∗ y − β ∗ z
returnA−≺ (x , y , z)

Fig. 4. ODE examples in arrow notation

allows one to use variable bindings as “points” to interconnect arrows, e.g.,
x ′ ← f−≺ x passes a value x through an arrow f and names the result x ′. So
the proc expression is really just another way to express arrow compositions by
naming the “points”, in contrast to the point-free style.

4 ODE and Arrows

We begin with an abstract view of ODE programs without committing to a
particular arrow implementation. Here is the exponential ODE example written
in arrow notation:

e = proc ()→ do
rec e ← init 1−≺ e
returnA−≺ e

In the above program, the rec keyword indicates a recursive definition, We give
more examples in Figure 4 by re-writing in arrow notation the same ODEs given
in Figure 1.

In the actual implementation, we simply lift all arithmetic operations to pure
arrows, and the only domain specific operator needed is an init arrow. Following
our previous two DSL designs, we have to traverse the internal structure of our
DSL and update all initial values. Hence a natural choice is to implement our
arrow to reflect this kind of traversal:

newtype ODE s a b = ODE (Updater s → a → (b,ODE s a b))
type Updater s = s → s → s

The ODE type is parameterized by the type of initial value s, and implemented
as a function that takes an Updater and an input value of type a, and returns a
pair: output value of type b, and an updated ODE. The only place we actually

apply the Updater is in the init combinator, where both the initial value and
the current input are given to the Updater to produce an updated initial value:

init :: s → ODE s s s
init i = ODE h

where h f x = (i , init (f i x))

All other arrow combinators simply pass the Updater around to complete a
full traversal. Then we can perform numerical integrations by passing the euler
function as the Updater , and implement the sample function in a similar way as
we have seen before:

instance Arrow (ODE s) where
arr f = ODE h where h u x = (f x , arr f)
ODE f ≫ ODE g = ODE h where h u x = let (y , f ′) = f u x

(z , g ′) = g u y
in (z , f ′ ≫ g ′)

first (ODE f) = ODE h where h u (x , z) = let (y , f ′) = f u x
in ((y , z),first f ′)

instance ArrowLoop (ODE s) where
loop (ODE f) = ODE h where h u x = let ((y , z), f ′) = f u (x , z)

in (y , loop f ′)
euler :: Num s ⇒ s → Updater s
euler h i x = i + h ∗ x
sample :: Num s ⇒ s → ODE s () c → [c]
sample h (ODE f) = y : sample h f ′

where (y , f ′) = f (euler h) ()

This approach is not only elegant, it is also efficient – there are no space leaks.
For example, unfolding sample 0.001 e in GHCi executes correctly and exhibits
a linear time behavior. This is because

1. The representation of an ODE is composed from a fixed number of arrows
with no cycles, and thus the traversal will always terminate.

2. Although the arrow itself is implemented as a higher-order function, unlike
the HOAS implementation, it makes no references to environment values,
and hence it is not a closure.

3. The traversal of all arrows returns new arrows of the same size, which can
be proved by a structural induction as follows:
(a) The traversal of a pure arrow always returns a pure arrow of the same

size.
(b) The traversal of all arrow compositions (≫, first , and loop) always re-

turns a composition of the same structure, and of the same size.
(c) The update of initial values is only within the init arrow, which also

returns a new arrow of the same size.

Of course the above is only an informal proof; a formal proof would depend on a
more precise definition of size, and the lazy (call-by-need) semantics of the host

Fig. 5. Arrow diagram of damped oscillator

language. We omit such proofs here. It must be noted, however, that much of
the above reasoning has little to do with the actual implementation of the arrow
and its combinators. In other words, arrows capture sharing by design.

This intuition becomes more evident when we look at arrow programs writ-
ten using combinators. As a slightly more complex example, we translate the
program for a damped oscillator given in Figure 4 to combinators below:

loop (arr snd ≫ loop (arr f ≫ init y1 ≫ arr dup) ≫ init y0 ≫ arr dup)
where dup x = (x , x)

f (y , y ′) = −c ∗ y ′ − y

It is obvious that the above program consists of a fixed number of arrows that
are easy to traverse or manipulate. The same program is presented pictorially in
Figure 5 where the loops represent the values of y (outer) and y ′ (inner) being
fed back to the inputs. Their values are shared at all the “points”. For instance,
the function dup only evaluates its argument once.

Both HOAS and arrow-based DSLs can be viewed as middle grounds between
shallow and deep embeddings. We advocate the use of arrows because, Unlike
HOAS, lambdas in the object language are represented as compositions of arrow
combinators, which lends to easy program manipulation. Also, We no longer
have to deal with variable bindings, environments or open terms since all arrows
translate to combinators that are always closed, and do not require memoization.

5 ODE and CCA

The use of the init arrow combinator is interesting – it introduces an inter-
nal state that is subject to both intentional computation (for being an arrow)
and extensional examination (for being part of a traversal). If we ignore the
monomorphism restriction of the ODE arrow for a moment, we can make a
further abstraction by defining a new type class:

class Arrow a ⇒ ArrowInit a where
init :: b → a b b

The ArrowInit class actually represents a more constrained arrow called
Causal Commutative Arrow (CCA) [11] that builds on top of a simply typed

lambda calculus (with a few extensions), and must satisfy two additional laws
besides the arrow and arrow loop laws:

commutativity first f ≫ second g = second g ≫ first f
product init i ??? init j = init (i , j)

Based on the abstract arrow laws, an important property of CCA is that they
enjoy a canonical form called Causal Commutative Normal Form (CCNF) that is
either a pure arrow of the form arr f , or loop (arr f ≫ second (second (init i)))
for some initial state i and a pure function f . Furthermore if we relax the con-
dition and allow recursions in the pure function, we end up with an optimized
CCNF of the form loop (arr g ≫ second (init i)). For example, the arrow
program for damped oscillator is translated to the optimized CCNF below:

loop (arr g ≫ second (init i))
where i = (y0, y1)

g (, (y , y ′)) = let y ′′ = −c ∗ y ′ − y
in (y , (y ′, y ′′))

This kind of normalization can be seen as a stated compilation that turns an
arrow program into a pair (i, g) where

– The stat i is a nested tuple that can be viewed as a vector since all states
in our ODEs are of the same numerical types.

– The pure function g computes the derivative the state vector.

With this result in mind, we implement a new sampling function as follows:

class VectorSpace v a where
(∗ˆ) :: v → a → a

instance Num a ⇒ VectorSpace a a where
x ∗ˆ y = x ∗ y

instance (VectorSpace v a,VectorSpace v b)⇒ VectorSpace v (a, b) where
k ∗ˆ (x , y) = (k ∗ˆ x , k ∗ˆ y)

instance (Num a,Num b)⇒ Num (a, b) where
negate (x , y) = (negate x ,negate y)
(x , y) + (u, v) = (x + u, y + v)
(x , y) ∗ (u, v) = (x ∗ u, y ∗ v)
...

euler :: (VectorSpace v a,Num a)⇒ v → a → a → a
euler h i i ′ = i + h ∗ˆ i ′

sample :: (VectorSpace v a,Num a)⇒ v → (a, ((), a)→ (b, a))→ [b]
sample h (i , f) = aux i

where aux i = x : aux j
where (x , i ′) = f ((), i)

j = euler h i i ′

The VectorSpace class captures state vectors with a scalar multiplication oper-
ator ∗ˆ, and also regains the homogeneous type required by euler . Such tuples
are made instances of the Num class, where arithmetic operators are overloaded
point-wise. The sample function then takes the tuple (i , g) we obtain from the
optimized CCNF of an arrow program, uses function g to calculate the derivative
of i , and computes its next step value using euler .

Now it becomes even clearer that there is no leak because only the state
vector is updated during the repeated sampling, while the pure function remains
unchanged. In addition, it runs very fast when compiled with GHC thanks to
the normalization of CCA.

6 Benchmark

We compare the DSL performance of the tagged solution, the ODE arrow and
CCA-based staged compilation by running ODE examples listed in Figure 1 and
Figure 4. We do not consider the very first DSL and the HOAS version because
they both have space leaks, and neither do we include results from the memoized
HOAS version since it is always slower than the tagged DSL. The benchmarks
were run on an Intel Pentium 4 machine running a 32-bit Linux OS. All programs
are compiled to compute 105 samples using GHC 6.10.4 with compilation flag
-O2 -fvia-C. The results are given in Figure 6, where all numbers are speed-up
ratios measured in CPU time normalized to the speed of the first column. We
make the following observations:

1. As the ODE gets more complex (from sine to oscillator, and to Lorenz), the
tagged version becomes slower since it incurs more overhead interpreting the
DSL, as well as remembering and comparing visited tags.

2. The Arrow version is slower than the tagged version for simpler ODEs, which
is attributed to the overhead of interpreting the arrow combinators.

3. The CCA version is orders of magnitude faster since it is free of all arrow
and arrow notation overhead. The intermediate Core program generated by
GHC also confirms that the CCA optimization leads to very efficient target
code in a tight loop.

7 Discussion

Before discussing the sharing problem in general, one may ask why we take the
long road implementing a DSL for ODEs, when they can be directly represented

Tagged Arrow CCA

Sine wave 1 0.31 14.06

Damped oscillator 1 0.75 35.48

Lorenz attractor 1 1.79 48.79

Fig. 6. Benchmark of DSLs for ODE (normalized speed)

in Haskell as a function that computes derivatives. For example, the damped
oscillator ODE in Figure 1 can be described as follows:

f (y , y ′) = let y ′′ = −c ∗ y ′ − y
in (y ′, y ′′)

Coupled with a set of initial values (y0, y1), we have a pair from which numerical
solutions to the ODE can be computed. A major drawback, however, is that
such a pair is at too low level because it is unable to:

1. express the function represented by an ODE as a single value;
2. express compositions such as y ∗ y where y is defined by the above ODE;
3. make room for new extensions.

The lack of abstraction renders such a direct representation a poor choice for a
DSL. Moreover, the purpose of this paper is not to solve differential equations,
but to explore the design space of embedded DSLs that preserves sharing of
computation. It is also worth noting that our staged compilation through CCA
yields a similar pair of function and state.

Memoization [12] caches previous computation results and later re-uses in-
stead of re-computes them. A generic memo function builds an internal lookup
table that may interfere with garbage collection, and the prompt release of cached
data is critical to the success of this technique.

The sharing problem discussed in this paper is of course not new. A major-
ity of efforts have focused on detecting cycles and properly representing them.
O’Donnell [14] uses integer tags for explicit labelling, while Claessen and Sands
[3] suggest a non-conservative extension using references. Gill [7] introduces
type-safe observable sharing using stable names within the IO monad. These
techniques usually translate a lazy cyclic structure into an equivalent graph rep-
resentation, but are inefficient at handing updates.

Introducing variable bindings to denote sharing or recursion in an algebraic
data type is not new either. Fegaras and Sheard [5] adopt HOAS, while Ghani
et al. [6] employ de Bruijn indices in a nested data type [1].

Historically the normal order reduction of a combinator program is known
to preserve sharing in a similar way to lazy (call-by-need) evaluation [16], but
such a style has rarely been used to represent sharing or cycles in algebraic
data types despite having less overhead than both variable bindings and de
Bruijn indices. The arrow abstraction gives rise to a rich algebra in a combinator
style, which makes it a suitable candidate for traversals and updates, as well as
transformations using the set of arrow laws. The abstract properties of arrows are
powerful enough that they lead to the discovery of a normal form for CCA [11],
and a staged compilation technique that eliminates all interpretive overhead.

Acknowledgements This research was supported in part by NSF grants CCF-
0811665 and CNS-0720682, and by a grant from Microsoft Research.

Bibliography

[1] Richard S. Bird and Ross Paterson. de bruijn notation as a nested datatype.
J. Funct. Program., 9(1):77–91, 1999. ISSN 0956-7968.

[2] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hard-
ware design in haskell. In ICFP ’98: International Conference on Functional
Programming, pages 174–184. ACM Press, 1998.

[3] Koen Claessen and David Sands. Observable sharing for functional circuit
description. In Asian Computing Science Conference, pages 62–73. Springer
Verlag, 1999.

[4] Antony Courtney and Conal Elliott. Genuinely functional user interfaces.
In Proc. of the 2001 ACM SIGPLAN Haskell Workshop. ACM Press, 2001.

[5] Leonidas Fegaras and Tim Sheard. Revisiting catamorphisms over
datatypes with embedded functions (or, programs from outer space). In
POPL’96: Proc. of the 17th symposium on Principles of programming lan-
guages, pages 284–294. ACM Press, 1996.

[6] N. Ghani, M. Hamana, T. Uustalu, and V. Vene. Representing cyclic struc-
tures as nested datatypes. In Proc. of 7th Symposium on Trends in Func-
tional Programming (TFP 2006), pages 173–188, 2006.

[7] Andy Gill. Type-safe observable sharing in Haskell. In Proc. of the 2009
ACM SIGPLAN Haskell Symposium. ACM Press, 2009.

[8] John Hughes. Generalising monads to arrows. Science of Computer Pro-
gramming, 37:67–111, 2000.

[9] Jerzy Karczmarczuk. Functional differentiation of computer programs.
In ICFP ’98: International Conference on Functional Programming, pages
195–203, 1998.

[10] Hai Liu and Paul Hudak. Plugging a space leak with an arrow. Electronic
Notes in Theoretical Computer Science, 193:29–45, 2007.

[11] Hai Liu, Eric Cheng, and Paul Hudak. Causal commutative arrows and
their optimization. In ICFP ’09: International Conference on Functional
Programming, pages 35–46. ACM Press, 2009.

[12] Donald Michie. Memo functions and machine learning. Nature, 218(5136):
19–22, 1968.

[13] Henrik Nilsson, Antony Courtney, and John Peterson. Functional Reac-
tive Programming, continued. In Proc. of ACM SIGPLAN 2002 Haskell
Workshop. ACM Press, 2002.

[14] John T. O’Donnell. Generating netlists from executable circuit specifica-
tions in a pure functional language. In Functional Programming Glasgow,
Springer-Verlag Workshops in Computing, pages 178–194. Springer-Verlag,
1992.

[15] Ross Paterson. A new notation for arrows. In ICFP ’01: International
Conference on Functional Programming, pages 229–240. ACM Press, 2001.

[16] D.A. Turner. A new implementation technique for applicative languages.
Software-Practice and Experience, 9:31–49, 1979.

