
Compress-and-Conquer for Optimal Multicore Computing

Zhijing G. Mou
Sinovate, LLC

gmou5813@gmail.com

Hai Liu Paul Hudak
Yale University

{hai.liu,paul.hudak}@yale.edu

Abstract
We propose a programming paradigm called compress-and-conquer
(CC) that leads to optimal performance on multicore platforms.
Given a multicore system of p cores and a problem of size n, the
problem is first reduced to p smaller problems, each of which can
be solved independently of the others (the compression phase).
From the solutions to the p problems, a compressed version of
the same problem of size O(p) is deduced and solved (the global
phase). The solution to the original problem is then derived from
the solution to the compressed problem together with the solutions
of the smaller problems (the expansion phase).

The CC paradigm reduces the complexity of multicore pro-
gramming by allowing the best-known sequential algorithm for a
problem to be used in each of the three phases. In this paper we ap-
ply the CC paradigm to a range of problems including scan, nested
scan, difference equations, banded linear systems, and linear tridi-
agonal systems. The performance of CC programs is analyzed, and
their optimality and linear speedup are proven. Characteristics of
the problem space subject to CC are formally examined, and we
show that its computational power subsumes that of scan, nested
scan, and mapReduce.

The CC paradigm has been implemented in Haskell as a mod-
ular, higher-order function, whose constituent functions can be
shared by seemingly unrelated problems. This function is compiled
into low-level Haskell threads that run on a multicore machine, and
performance benchmarks confirm the theoretical analysis.

Categories and Subject Descriptors D.1.3 [Parallel Program-
ming]

General Terms Algorithms, Languages, Theory.

Keywords Multicore Programming, Parallel Computing, Pro-
gramming Paradigm, Functional Programming, Scan, Divide and
Conquer, Compress and Conquer

1. Introduction
Parallel programs often introduce certain overheads, such as inter-
processor communication, synchronization, and so on. Sometimes
these overheads even occur at the algorithmic level. In particular,
the total number of operations performed by a parallel algorithm is
often greater than that for the best sequential algorithm. We believe
that, unlike massively parallel computers, the number of processing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DAMP’10, January 19, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-859-9/10/01. . . $10.00

units on a multicore system is best considered as a constant, inde-
pendent of the problem size. It follows that the amount of compu-
tation on each core should be of the same order as the complexity
of the original problem. Therefore, efficient sequential computa-
tion within each core is as crucial as the parallel execution of the
program by all cores, in terms of overall performance.

The question we ask, then, is whether we can take advantage
of the best-known sequential algorithms in multicore computing.
A positive answer to the question might not only lead to efficient
multicore computation, but also to a reduction in the complexity of
multicore programming, in that a new algorithm does not need to
be found if a multicore algorithm can be easily derived from the
sequential one.

In this paper, we introduce a new programming paradigm that
we call compress-and-conquer (CC). Given a multicore system of
p cores and a problem of size n, the problem is first reduced to p
smaller problems, each of which can be solved independently of the
others (the compression phase). From the solutions to the p prob-
lems, a compressed version of the same problem of size O(p) is
deduced and solved (the global phase). The solution to the orig-
inal problem is then derived from the solution to the compressed
problem together with the solutions of the smaller problems (the
expansion phase).

Although this idea sounds simple enough, we have found it
fruitful to formalize, analyze, carefully implement, and finally ap-
ply the method to a number of non-trivial applications. In particular,
our contributions include:

• A description of CC as a high-level algorithmic abstraction
(or skeleton) for multicore computing, that demonstrates how
a multicore algorithm can be derived from a sequential one.

• A proof of the optimality and linear speedup of CC programs.
• A Haskell library that captures CC as a modular higher-order

function. This allows a multicore algorithm to be specified in
terms of a small set of constituent functions, many of which can
be shared amongst different programs, thus enhancing modular-
ity and promoting code reuse.

• An algorithm for mapping a CC abstraction to a multicore
platform, as well as a monadic implementation of this algorithm
in Haskell, including the use of mutable arrays.

• Identification of the class of problems subject to the CC ab-
straction, and an understanding of its limitations, along with a
proof that CC subsumes multicore programming models based
on scan or mapReduce.

• Application of the CC paradigm to several problems including
scan, nested scan, second-order difference equations, banded
linear systems, tridiagonal systems, and mapReduce,

• Benchmarks of CC programs for some of the above problems
that validate well the theoretical performance results.

• A critical comparison of CC to divide-and-conquer, and obser-
vations for future work, including the use of a nested form of
CC that can be mapped onto hierarchical multicore systems.

The paper is organized as follows. We introduce the notion of CC in
Section 2. CC algorithms expressed in Haskell are derived in Sec-
tion 3 for problems including scan, nested scan, second-order linear
difference equations, Fibonacci sequence, banded linear systems,
tridiagonal linear systems, and mapReduce. In Section 4 we show
how CC programs can be compiled for execution on multicore sys-
tems; in particular, how logical data dependencies are mapped to
inter-core communications. In Section 5 we give an analysis and
proof for the optimality of CC in terms of operation count, commu-
nication, and scalability. The benchmarks of some CC programs
on multicore systems are also presented. In Section 6 we identify
the class of problems subject to the paradigm, and its relation to
the computational complexity hierarchy. Some variants of CC are
given in Section 7. The relation of CC to divide-and-conquer and
related work are discussed in Sections 8 and 9, respectively.

2. The Paradigm
We represent a collection over values of type a as an abstract data
type S a, which can be anything like an array, a list, a tree, a set,
etc. Given a function fs :: S a→ S b, we define the compress-and-
conquer (CC) of function f as a higher order function as follows:

DEFINITION 2.1. The algorithm of compress-and-conquer (CC)

cc :: (∀ a . S a→[S a])→ – divide
(∀ a . [S a]→S a)→ – combine
(S b→S c)→ – compress
((S d, S a)→S a)→ – expand
(S c→S a)→ – pre-communication
(S b→S d)→ – post-communication
(S a→S b)→ – sequential function
S a→S b

cc d c co xp comg comh fs s =
let seg = d s

pre = map (co . fs) seg
core = (d . comh . fs . comg . c) pre
post = map (fs . xp) (zip core seg)

in c post

The computation defined by the CC function can be broken clearly
into into three-phases, which we will refer to as compression,
global, and expansion phases respectively.

1. Compression phase map (co . fs) . d : The input is first divided
by d into a number of segments, and function fs is applied
in parallel to each segment, with no inter-dependencies. The
results are then compressed by function co at each segment.
Note that in Def. 2.1 we name the divided segments as seg,
which is preserved and later retrieved in the expansion phase.

2. Global phase d . comh . fs . comg . c : The compressed
segments from the compression phase are first combined by
c to become a single collection before passed to the pre-
communication function comg . This is followed by an appli-
cation of the function fs, and then a post-communication of
comh. The result is again divided into segments, ready to be
distributed back.

3. Expansion phase c . map (fs . xp) . zip : The results from the
global phase are first zipped with the original input segments,
and then expanded by function xp. Function fs is applied again
to each segment with no inter-dependencies, and the results are
finally combined into one collection.

d
¨
§

¥
¦x

map fs

¨
§

¥
¦
¨
§

¥
¦
¨
§

¥
¦
¨
§

¥
¦x0 x1 x2 x3

c . map co
¨
§

¥
¦
¨
§

¥
¦
¨
§

¥
¦
¨
§

¥
¦y0 y1 y2 y3

comh . fs . comg

¨
§

¥
¦x′

zip . d
¨
§

¥
¦y′

map(fs.xp)
¨
§

¥
¦
¨
§

¥
¦
¨
§

¥
¦
¨
§

¥
¦(y′0) (y′1) (y′2) (y′3)x0 x1 x2 x3

c
¨
§

¥
¦
¨
§

¥
¦
¨
§

¥
¦
¨
§

¥
¦x′0 x′1 x′2 x′3

y
¨
§

¥
¦

Figure 1. A schematic illustration of a compress-and-
conquer algorithm to compute y = f x where f =
cc d c co xp comg comh fs with division arity 4. The first-
level oval box represents the input data x, and the last one the
output y. The constituent functions to be applied to each level are
listed on the left.

A schematic illustration of the CC paradigm is given in Fig. 1. We
will refer to the divide, combine, compress, expand, pre- and post-
communication, and the sequential function fs as the constituents
of compress-and-conquer, They are further explained below:

1. Function d :: ∀ a . S a→ [S a] divides the given collection into a
number of disjoint segments, and the combine function c :: ∀ a
. [S a]→ S a is its left inverse with the property c . d = id. They
both are given a polymorphic rank-2 type because we want the
division to be independent of the actual values in the collection.
For example, list concatenation is polymorphic, whereas the
merge in merge-sort and the division in quick-sort are both non-
polymorphic.

2. Function co :: S b → S c compresses the result after fs is
applied to the input segments before passing them to the global
phase. We say that a compress function co is bounded if there
exists a constant k, such that for any s, |s|/|co s| ≤ k, where
|s| is the size of collection s. A compress function that is not
bounded is unbounded. For example, a function that maps any
set to a singleton set is an unbounded compress function, which
compresses a set of any size to one of size one. In contrast, the
compression of a vector that returns all the entries with even
indices is bounded, and has a compression ratio of two.

3. The expand function xp :: (S d, S a) → S a takes the results of
type S d from the global phase, and expands them by modifying
the segments from the original input of type S a, before passing
to the function fs in the final phase.

4. In the global phase, before fs is applied to the compressed data,
the data is pre-processed by function comg :: S c → S a;
then the output from fs is post-processed by function comh ::
S b → S d . These are called the pre- and post-communication
functions because they represent the logical data dependency
between segments.

We define the following properties of a CC algorithm:

• The arity of a CC function is the arity of its divide and combine
constituents.

• The compression ratio of a CC function is the compression ratio
of its compression constituent.

• A CC function has an unbounded compression ratio if its com-
pression constituent is unbounded.

• A CC function is self-similar if the CC of fs defines the same
function, i.e. cc d c co xp comg comh fs = fs, for some co, xp,
comg , comh, and for any d and c.

As shall be seen in the later sections, functions defined with the
above cc forms can be mapped to multicore systems and often lead
to algorithms with optimal speedups. The CC higher-order form
provides a way to specify a multicore algorithm with often very
simple constituent functions.

3. Case Studies
In this section we examine the application of CC to a number of
common problems. Because these problems all deal with ordered
sequences, without loss of generality we use the list type as a
concrete representation for S a:

type S a = [a]

It is important to note that programs written using the list repre-
sentation are not meant to be efficient implementations, but rather
specifications with sufficient detail to guide real implementations
over multi-cores that will be discussed in Sec 4.

We also define a few commonly used constituent functions:

d :: Int→ S a→ [S a]
d p l | p == 1 = [l]
| otherwise = let (m, n) = splitAt (length l ‘div‘ p) l

in m : d (p - 1) n
c :: Int→ [S a]→ S a
c p = concat

first, last, last2, bothend :: S a→ S a
first l = take 1 l
first2 l = take 2 l
last l = drop (length l - 1) l
last2 l = drop (length l - 2) l
bothend l = first l ++ last l

sr :: a→ S a→ S a
sr i l = i : take (length l - 1) l

Function d divides the given sequence into p equal-size segments,
and c is its inverse. Functions first,first2,last,last2,bothend are sim-
ple constituent functions that extract the first, frst two, last, last two,
or both first and last elements from a sequence. Function sr shifts
the given sequence one position to the right, and fills in the first
element with its argument.

3.1 Scan
Scan (or prefix) has been considered a powerful parallel and multi-
core programming construct. Here is a formal definition:

DEFINITION 3.1. A scan or prefix operation is defined to be a func-
tion that maps an input sequence x0, x1, . . . , xn−1 with respect to
an associative binary operator ⊕ to an output of:

x0, x0 ⊕ x1, . . . , x0 ⊕ x1 ⊕ · · · ⊕ xn−1

In Haskell, a function called scanl1 from the Prelude already does
exactly this computation [16]. So we’ll just define our sequential
scan as:

scan = scanl1

We next show a CC algorithm for scan by providing its simple
constituents.

ALGORITHM 3.1. Scan with respect to an associative binary op-
erator ⊕ by compress-and-conquer:

ccScan ⊕ = cc (d p) (c p) last addfirst id (sr 0) (scan ⊕)
where addfirst ([v], (x : xs)) = v ⊕ x : xs

Informally, the cc higher-order function takes seven of its con-
stituents, and returns a function that computes the scan with re-
spect to the binary associative operator ⊕. It does so by first divid-
ing the input sequence into p segments, and applying the scan over
each segment, all segments in parallel. The last elements of the seg-
mented scan are then used to derive a compressed sequence of size
p. Scan is then performed over the compressed sequence. The post
communication shifts the global result to the right by one position
so that the ith result is distributed back to the (i + 1)th segments,
and added to the first element in the original segment by the expand
function addfirst. A scan is then performed again in parallel to all
the segments. All segments are then concatenated to form the final
solution (See Figure 2).

d
¨
§

¥
¦1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

map scans
¨
§

¥
¦
¨
§

¥
¦
¨
§

¥
¦
¨
§

¥
¦1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

¨
§

¥
¦
¨
§

¥
¦
¨
§

¥
¦
¨
§

¥
¦c.map last 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

scans
¨
§

¥
¦4 4 4 4

sr
¨
§

¥
¦4 8 12 16

map(scans.
addfirst)

¨
§

¥
¦
¨
§

¥
¦
¨
§

¥
¦
¨
§

¥
¦(0)1 1 1 1 (4)1 1 1 1 (8)1 1 1 1 (12)1 1 1 1

c
¨
§

¥
¦
¨
§

¥
¦
¨
§

¥
¦
¨
§

¥
¦1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
¨
§

¥
¦

Figure 2. Scan by CC with a sequence of 16 1’s, and p = 4.

3.2 Nested Scan
A nested scan applies scan to a list of sequences. More formally,
we have:

DEFINITION 3.2. A nested scan with respect to an associate binary
operator ⊕ is defined in terms of scan (see Def. 3.1):

nestedScan ⊕ = map (scan ⊕)

The solution to nested scan is usually a mapping to the flat scan
without involving nested parallelism. We first convert the list of
sequences to a flat sequence of pairs with the following function:

flat :: [S a]→S (a, Bool)
flat l = zip (concat l) [n == length v | v← l, n← [1..length v]]

Intuitively, the second component of each pair is a flag indicating
whether or not the original element was the last element in the
nested sequence. For example:

flat [[1, 2, 3], [4, 5], [6]] = [(1, ◦), (2, ◦), (3, •), (4, ◦), (5, •), (6, •)]
where • = True, and ◦ = False. We also define the inverse of flat
and a lifting function as follows:

unflat :: S (a,Bool)→ [S a]
unflat l | null l = []

| otherwise = let (m, (v : n)) = break snd l
in map fst (m ++ [v]) : unflat n

lift :: (a→ a→ a)→ ((a, Bool)→ (a, Bool)→ (a, Bool))
lift f (x, u) (y, v) = (if u then y else f x y, v)

It can be easily verified that if ⊕ is associative over type a, then lift
⊕ is associative over type (a, Bool).

ALGORITHM 3.2. Nested scan with respect to an associative bi-
nary operator ⊕ can be reduced to a flat scan over pairs by

ccNestedScan ⊕ = unflat . ccScan (lift ⊕) . flat

3.3 Second-Order Linear Difference Equations
In this section, we consider the system of second-order linear dif-
ference equations of the following form:

DEFINITION 3.3. A system of second-order linear difference equa-
tions is:

y0 = c0
y1 = c1
y2 = a2y0 + b2y1 + c2
...
yn−1 = an−1yn−3 + bn−1yn−2 + cn−1

(1)

Let us consider a section of (1) corresponding to the variables
indexed from s to t, s < t < n, denoted by L[s, t]:

ys = as ys−2 + bs ys−1 + cs

ys+1 = as+1ys−1 + bs+1ys + cs+1

ys+2 = as+2ys + bs+2ys+1 + cs+2

...
yt = at yt−2 + bt yt−1 + ct

(2)

In a system of difference equations, we say a variable yi depends
on another variable yj if yj appears as a term on the right-hand side
of its equation; and two variables are aligned if they depend on the
same variables. We next will align all the variables from ys to yt, so
that they all depend on the external variables ys−2 and ys−1. This
can be achieved with the following sequential algorithm:

ALGORITHM 3.3. A sequential internal solver for a section of
second-order difference equation: Given a section L[s, t], where
only the first two variables may have external references, and all
the other variables refer to variables internal to the section. Let
X = (ys−2, ys−1, 1). We define a new sequence of vectors ui such
that yi = ui ∗ X , where ∗ stands for a point-wise multiplication
for vectors.

ys = us ∗X
= as ys−2 + bs ys−1 + cs

= (as, bs, cs) ∗X
ys+1 = us+1 ∗X

= as+1ys−1 + bs+1ys + cs+1

= (asbs+1, as+1 + bsbs+1, cs+1 + csbs+1) ∗X
...
yt = ut ∗X

=

0
@
2
4
ut−2

ut−1

0 0 1

3
5 (at, bt, ct)

1
A ∗X

In Haskell, we write the internal solver as a function mapping from
the sequence of (ai, bi, ci) to the sequence of ui as follows:

diff ((a0, b0, c0) : (a1, b1, c1) : xs) = u
where u0 = (a0, b0, c0)

u1 = (a0 ∗ b1, a1 + b0 ∗ b1, c1 + c0 ∗ b1)
u = u0 : u1 : zipWith3 f u (tail u) xs
f x y z = (x, y, (0, 0, 1)) n z

where n is defined to be the operation of multiplying a 3x3 matrix
with a vector of size 3.

The above gives a definition of vector sequence ui, for s ≤ i ≤
t, and we have successfully aligned all variables from ys to yt to
the external variables represented by X = (ys−2, ys−1, 1).

Note that diff can also be used to solve a complete system of 2nd
order linear difference equations where a0 = b0 = a1 = b1 = 0.
It doesn’t matter how we initialize the two variables in X , diff
will always return a sequence of ui = (0, 0, yi). In this sense,
Algo. 3.3 is an algorithm for a generalized form of second-order
linear difference equations.

Now consider a system L of n second-order difference equa-
tions partitioned into p sections. By applying Algo. 3.3 to each sec-
tion, we can make all the internal variables of each section align to
the last two variables of the previous section. Let L′ be a system of
equations formed by taking the last two equations from each sec-
tion, then it is not hard to see, with a little adjustment, what we get
is in turn a closed second-order difference equation, with a smaller
size of 2p. We call L′ a compressed version of L.

The adjustment needed here is to make the last variable from
each section, except the first section, instead of aligning with the
last two variables from the previous section, align with the last from
the previous, and second last from its own section. This is achieved
with the following function:

adjustdiff (x : x’ : xs) = x : x’ : aux xs
where aux [] = []

aux ((a, b, c) : (a’, b’, c’) : xs) =
(a, b, c) : (a”, b”, c”) : aux xs
where a” = b’ - b” ∗ b

b” = if a == 0 then 0 else a’ / a
c” = c’ - b” ∗ c

Furthermore, solving L′ means we have solved the last two vari-
ables of each section, therefore the first two variables of the next
section can in turn be solved. We’ll design an expansion function
to properly re-initialize the first two variables in each section, so
that they becomes individually solvable by Algo. 3.3.

initfirst2 ([(, , x), (, , x’)], (u0 : u1 : xs)) =
(0, 0, y0) : (0, 0, y1) : xs
where y0 = (x, x’, 1) ∗ u0

y1 = (x’, y0, 1) ∗ u1

This lead to the following compress-and-conquer algorithm:

ALGORITHM 3.4. Compress-and-conquer for second-order linear
difference equations:

ccDiff = cc (d p) (c p) last2 initfirst2 adjustdiff (sr2 (0, 0, 0)) diff
where sr2 v = sr v . sr v

Observe that Fibonacci sequence is no more than a homogeneous
second-order difference equations with ci = 0 for 0 ≤ i ≤ n in
Eq. 1, therefore can be solved by CC.

ALGORITHM 3.5. Since Fibonacci sequence is no more than a
special case of second-order linear difference equations, Algo. 3.4
applies.

3.4 Banded Lower Triangular Linear Systems
DEFINITION 3.4. A banded lower triangular linear system with
bandwidth of two is:

2
666664

ȧ0

ȧ1 ḃ1
ȧ2 ḃ2 ċ2

ȧ3 ḃ3 ċ3
. . .

. . .
. . .

3
777775

2
66664

y0
y1
y2
y3
...

3
77775

=

2
66664

d0

d1

d2

d3

...

3
77775

By multiplying out the matrix and the vector of unknowns, and
some simple algebraic transformation, the above banded linear
system becomes a second-order difference equation in the form of
(1), where

y0 = d0/ȧ

y1 = (d1 − d0)/ḃ1
y2 = −(ḃ2/ċ2)y1 − (ȧ2/ċ2)y0 + d2

...

(3)

In other words, a banded linear system is equivalent to a difference
equation where the bandwidth equal of the banded system is equal
to the order of the difference equations. Algo. 3.4 therefore is also
a compress-and-conquer algorithm for banded linear systems of
bandwidth two.

ALGORITHM 3.6. Banded triangular linear systems with band-
width of two:

Convert the system to a second-order difference equations by
(3), and then apply Algo. 3.4.

In fact, Algo. 3.4 can be easily generalized to linear difference
equations of kth order, for arbitrary k, and therefore Algo. 3.6
can also be generalized to solved triangular linear systems with
arbitrary bandwidth of k. We choose however to omit the details
of the generalization from this paper.

3.5 Tridiagonal Linear Systems
In all the previous case studies, the inter-dependencies between
variables are one directional in that if we lay the variables from left
to right by their indices, then the dependencies are all from right to
left. Tridiagonal linear systems are examples of applications where
the dependencies are bi-directional.

The following is a general form for tridiagonal linear system L
with n unknowns:

DEFINITION 3.5. A tridiagonal linear system is:
2
6666664

b0 c0
a1 b1 c0

a2 b2 c2
a3 b3 c3

. . .
. . .

. . .
an−1 bn−1

3
7777775

2
6666664

y0
y1
y2
y3
...
yn−1

3
7777775

=

2
6666664

d0

d1

d2

d3

...
dn−1

3
7777775

Note that for a given variable yi the coefficients ai and ci represent
its dependency on yi−1, and yi+1 respectively in the above standard
form. The coefficient ai and ci are referred to as the forward and
backward dependency coefficients, respectively.

Now let us consider a section L[s, t] of the tridiagonal system
consists of the rows corresponds to variables ys to yt, where 0 ≤
s < t ≤ n.

2
664

as bs cs

as+1 bs+1 cs+1

. . .
. . .

. . .
at bt ct

3
775

2
664

ys

ys+1

...
yt

3
775 =

2
664

ds

ds+1

...
dt

3
775

A variable yi is said to be forward (backward) aligned with yj

if they are forward (backward) dependent on the same variables.
They are said to be aligned if they are both forward and backward
aligned. Hence, no two variables are aligned in the above diagram.

Variable can be aligned by Gaussian elimination. For example,
The variable ys+1 can be forward aligned with ys by multiply the
row for ys by −as+1/bs, and then add it to the row for ys+1. We

repeat this process for every row except the row for ys in L[s, t],
which leads to the following diagram:

2
6664

a′s b′s c′s
a′s+1 b′s+1 c′s+1

...
. . .

. . .
a′t b′t c′t

3
7775

2
664

ys

ys+1

...
yt

3
775 =

2
6664

d′s
d′s+1

...
d′t

3
7775

Now variables ys+1 to yt are forward aligned with ys, which means
that the coefficients of a′s, a′s+1, . . . , a

′
t are in the same column

in the matrix. We can write the forward alignment as a function
that takes a sequence of (ai, bi, ci, di) and returns the modified co-
efficients (a′i, b

′
i, c

′
i, d

′
i) as follows:

forward [] = []
forward (x : xs) = u

where u = norm x : zipWith f xs u
f (a, b, c, d) (a’, b’, c’, d’) =

norm (-a’ ∗ a, b - c’ ∗ a, c, d - d’ ∗ a)
norm (a, b, c, d) = (a / b, 1, c / b, d / b)

Note that in the process we also normalize every row so that the
co-efficients on the diagonal of the matrix (all the bi) become 1.

With the forward alignment in place, we can use a similar
process to backward align variable yt−1 with yt, and so on, which
leads to the following diagram:

2
66664

a′′s b′′s c′′s
a′′s+1 b′′s+1 c′′s+1

...
. . .

...
a′′t−1 b′′t−1 c′′t−1

a′′t b′′t c′′t

3
77775

2
66664

ys

ys+1

...
yt−1

yt

3
77775

=

2
66664

d′′s
d′′s+1

...
d′′t−1

d′′t

3
77775

Note that all variables ys to yt are now both forward and backward
aligned. We can write the backward alignment function in a similar
manner as follows:

backward [] = []
backward u = reverse v

where (x : xs) = reverse u
v = x : zipWith f xs v
f (a, b, c, d) (a’, b’, c’, d’) =

(a - a’ ∗ c, b, - c’ ∗ c, d - d’ ∗ c)

We consider a tridiagonal system is solved if only diagonal coeffi-
cients are left in the matrix. Obviously, if as = ct = 0, the sys-
tem L[s, t] is completely solved after forward and backward align-
ments. When as or ct are not zeros, however, we shall only align
the inner block L[s + 1, t − 1], and adjust the boundary rows for
ys and yt to align inward like this:

adjust l = let [(a0, b0, c0, d0), (a1, b1, c1, d1)] = first2 l
[(a2, b2, c2, d2), (a3, b3, c3, d3)] = last2 l

in [(a0, b0 − a1 ∗ c0,−c1 ∗ c0, d0 − d1 ∗ c0)] ++
middle l ++
[(−a2 ∗ a3, b3 − c2 ∗ a3, c3, d3 − d2 ∗ a3)]

As as result from this adjustment, we effectively obtain a diagram
of the following shape for L[s, t] when as 6= 0 or ct 6= 0:

2
66664

a′′s b′′s c′′s
a′′s+1 b′′t+1 c′′s+1

...
. . .

...
a′′t−1 b′′t−1 c′′t−1

a′′t b′′t c′′t

3
77775

2
66664

ys

ys+1

...
yt−1

yt

3
77775

=

2
66664

d′′s
d′′s+1

...
d′′t−1

d′′t

3
77775

ALGORITHM 3.7. A sequential internal solver for a section of
tridiagonal linear systems is a composition of the forward and
backward alignment, and the adjustment function:

trid [] = []
trid l = case (a, c) of

(0, 0)→ backward (forward l)
→ adjust ([x] ++ backward (forward (middle l)) ++ [y])

where [x@(a, , ,),y@(, ,c,)] = bothend l

Now if we divide a tridiagonal system into p sections, and apply
Algo. 3.7 to each section, they are then all internally solved. In
Figure 3, we show the non-zero coefficients in the matrix after
internally solving all sections for an example case where n = 16
and p = 4.

a aa a aa a aa a aa a aa a aa a aa a a -a a aa a aa a aa a aa a aa a aa a aa a

a a a a a a a a a a a a a a a a

aaa
aaa aa aaa

aaa aa aaa
aaa aa aaa

aaa

Figure 3. A tridiagonal linear system of size n (=16) divided into
p (=4) sections, each section internally solved.

By focusing on the first and last variables in all sections after
the internal solver trid is applied, one realizes that they in turn
form a compressed tridiagonal system of size 2p. This compressed
system can in turn be solved by trid. The solution of the compressed
tridiagonal system can be plugged back to each section, and each
section can then be completely solved independently. This leads
to the following compress-and-conquer algorithm for tridiagonal
linear systems:

ALGORITHM 3.8. Compress-and-conquer algorithm for tridiago-
nal linear systems

ccTrid = cc (d p) (c p) bothend replace id id trid
where replace ([x, y], l) = [x] ++ middle l ++ [y]

3.6 MapReduce
DEFINITION 3.6. MapReduce is the functional composition of the
map and reduce:

mapReduce f ⊕ = reduce ⊕ . map f

where reduce with respect to an associative binary operator ⊕ is
a function that maps a non-empty sequence x0, x1, . . . , xn−1 to a
single value of x0 ⊕ x1 ⊕ · · · ⊕ xn−1.

J. Dean and S. Ghemawat introduced mapReduce in [11] as a
separate programming construct, gave distributed implementations,
and showed it applies to many search engine problems.

The problem of mapReduce can be said to be an inherently
simpler problem than any of the problems we have considered
so far and can be computed by a compress-and-conquer where
the post-phase is not needed. We therefore introduce a new and
simpler version of compress-and-conquer, which we call pre-CC,
for it contains only the pre-phase of the more general CC form as
in Def. 2.1:

ccpre d c co f = co . c . map (co . f) . d

We then have the following simple algorithm for the parallel ver-
sion of mapReduce:

ALGORITHM 3.9. MapReduce with respect to an associative bi-
nary operator ⊕ and a function f is defined in terms of pre-CC:

ccMapReduce f ⊕ = ccpre (d p) (c p) (reduce ⊕) (map f)

4. Implementation
4.1 Operational Mapping
Implementation of compress-and-conquer algorithms on multicore
systems is fairly straightforward. The work done in compression
and expansion phases can be easily mapped onto p threads or pro-
cessors in parallel. We can certainly use a more compact represen-
tation than lists, but more fundamentally, the specification of CC as
given in Def. 2.1 is inefficient on today’s dominant CPU architec-
tures due to the immutability implied by referential transparency,
which prevents destructive updates. Also, the divide and combine
functions should just share the original input data instead of mak-
ing new copies of them, and the order and the arity of the divide
function needs to be consistent with combine.

For the above reasons, we move to a monadic form of compress-
and-conquer in Haskell [16]:

DEFINITION 4.1. The implementation of monadic compress-and-
conquer (ccm):

ccm :: Monad m⇒
(∀a. ([S a]→ m())
→ S a → m(S a))→ – divide then combine

(∀a. (S a → m())
→ [S a]→ m[S a])→ – combine then divide

(S a → m(S b))→ – compress
((S c,S a)→ m(S a))→ – expand
(S b → m(S a))→ – pre-core
(S a → m(S c))→ – post-core
(S a → m(S a))→ – sequential
S a → m(S a)

ccm dc cd co xp g h fs = dc aux
where aux seg = do

pre ← parmap (co · fs · dup) seg
core← cd (h · fs · g) pre
parmap (fs · xp) (zip core seg)

(f · g) x = g x >>= f

In this program, we intentionally define a composition operator (·)
to be the monadic counterpart of function composition so that our
implementation of ccm closely matches the specification of CC in
Def. 2.1. Further explanations are given below:

1. In order to do destructive updates, we must now make the
sequential function fs return the same collection type as its
input. This affects the overall types of ccm and its constituent
functions.

2. We pair up the divide and combine functions as either a single
divide-then-combine or combine-then-divide operation. Both
are now higher-order functions that take as argument a function
that can update the original data in place, but can not change the
structure of them.

3. Because the original CC algorithm requires the input collection
to remain unchanged until the expansion phase, we must use
dup :: S a → m(S a) to create a local copy of the segment
during the compression phase.

4. The original map function is changed to a monadic parmap
:: (a → m b) → [a] → m[b] that spawns off a system thread
for each segment, and only returns when all threads are done.

In our actual implementation, we choose to define the concrete
collection type as an unboxed mutable array as follows in order to
minimize computation overhead:

data S a = Arr (IOUArray Int a) – shared array
Int – lower bound
Int – upper bound

This definition leads to straightforward implementation of both cd
and dc by sharing the original array without duplicating them. All
the constituent functions used in the specification of our algorithms
must also be modified to operate on arrays, with direct indices and
destructive updates. We omit such details here.

Similarly, the sequential algorithms for all the applications we
considered in Section 3 need to be modified to a monadic ver-
sion that works on the concrete S a type defined above, while
their compress-and-conquer algorithms require little change except
moving from cc to ccm.

Among the different parallel facilities that GHC (Glasgow
Haskell Compiler) provides, the lightweight thread library becomes
a natural choice because the IO monad implements destructive up-
date. So in other words, we choose the monad m in Def. 4.1 to
be just IO, and parmap is implemented using forkIO. We also
choose the division parameter p to match the number of cores in
the hardware so that the original array is split into p segments, and
consequently parmap spawns exactly p system threads. We rely
on the operating system to balance system threads among multiple
cores.

4.2 Inter-Core Communications
With the mapping of CC algorithms to multicore systems given in
Section 4.1, and if we assume the divided segments reside locally
to each processor, we can see that there are two, and only two, con-
stituent functions in a CC algorithm that involve inter-core com-
munications: the results from co at the end the compression phase
are moved over to the global phase, and after the global phase, the
results are moved back to each processor as input to the expand
function. The remaining constituent functions are mapped to lo-
cal operations. Note that the constituent functions comg and comh

are referred to as communication functions, not because they are
to be mapped into inter-core communications at the implementa-
tion level, but rather they realize the dependency relations between
different sections in the logic domain.

Let S = (P0, . . . , Pp−1) be a multicore system with p cores
used by a CC algorithm, and, without loss of generality, P0 be the
appointed core for the global computation, then by the mapping of
parmap from Section 4.1, one can see that

• At the end of the compression phase, each Pi ,for 0 < i < p,
sends one piece of data to P0.

• At the beginning of the expansion phase, each Pi receives a
piece of data from P0.

If we go beyond a Haskell implementation, in the Message Pass-
ing Interface (MPI) [7], there are two supported communication
patterns, gather and scatter, that perform precisely the above two
operations respectively. It is therefore straightforward to support
the communication in CC algorithms with MPI. Other options, in-
cluding MP, PThreads, Intel’s Thread Building Blocks [10], and
Microsoft’s Parallel Task Library [13], can all be used as well.

5. Performance Analysis
Since parallel programs generally incur some overhead over the
best known sequential counterparts for the same problems, it is a
good practice to understand and quantify the overhead asymptoti-
cally. In this section, we show that the overhead of CC algorithms

in both operation and communication aspects are minimum, which
also translates to linear speedups on multicore systems.

5.1 Operation Optimality
Given a program P , its operation complexity, written ψ(P), is the
total number of operations that P performs, as a function of the
problem size. We say two programs P1 and P2 are consistent with
each other, written P1 ∼ P2, in operation complexity if and only if
ψ(P1) = Θ(ψ(P2))

1.

THEOREM 5.1. Let f be a CC program with base function fs (see
Def. 2.1), then f ∼ fs. In other words, a CC program is consistent
with its base function.
Proof: besides the sequential base function, all other constituents
in the CC program takes time independent of problem size.

Given a problem f , its operation complexity, written φ(f), is the
minimum number of operations f inherently requires, as a function
of the problem size. We say a program F that solves problem
f is operation optimal for f , written F ∝o f if and only if
ψ(F) = O(φ(f)).

It follows from the above definition and Theorem 5.1 that:

THEOREM 5.2. Given a problem f , a CC program F that solves
f , and the sequential base function fs for F, then F ∝o f if and
only if fs ∝o f .

The above theorem gives a convenient way to test for the operation
optimality of CC programs. From which one can easily verify that:

THEOREM 5.3. The CC algorithms Algo. 3.1 for scan, Algo. 3.2
for nested scan, Algo. 3.4 for second-order difference equations,
Algo. 3.5 for Fibonacci sequence, Algo. 3.6 for banded linear
systems, and Algo. 3.8 for tridiagonal linear systems, are operation
optimal.

5.2 Communication Optimality
Given a multicore program P , its communication complexity,
written δ(P), is the total number of inter-core communications
that P performs, as a function of the number of cores p. We
say two programs P1 and P2 are consistent in communication,
written P1 ≈ P2, in communication complexity if and only if
δ(P1) = Θ(δ(P2)).

Given a problem f over input X partitioned into p disjoint and
non-empty subsets of X, we say its communication complexity,
written γ(f), is the minimum number of references crossing the
partitions that f inherently requires, as a function of the number
of partitions m. We say a multicore program F solving problem
f is communication optimal for f , written F ∝c f if and only if
δ(F) = O(γ(f)).

THEOREM 5.4. The CC algorithms Algo. 3.1 for scan, Algo. 3.2
for nested scan, Algo. 3.4 for second-order difference equations,
Algo. 3.5 for Fibonacci sequence, Algo. 3.6 for banded linear sys-
tems, Algo, 3.8 for tridiagonal linear systems are all communica-
tion optimal.
Proof: Let f be any of the above problems, X the input for f .
SupposeX is partitioned into any p disjoint and non-empty blocks.
Since the final solution of f overX depends on at least one piece of
data in each of the m blocks, the communication complexity of f ,
γ(f(p)) = Ω(p) 2. But the CC algorithm for f has communication
complexity δf(p) = O(p). Therefore, the CC algorithm for f is
communication optimal.

1 f = Θ(g) if and only if f = O(g) and g = O(f)
2 given f and g, f is said to be at least of the order of g, written f = Ω(g),
if g = O(f)

5.3 Linear Speedups
Let f be a program, T (f, n, p) the time to carry out f on input size
n and p cores. Then the speedup of f is:

S(n) = T (f, n, 1)/T (f, n, p) (4)

It follows that:

THEOREM 5.5. Let p be the number of cores, n size of the input. If
p = o(n) 3 , then, the CC algorithms Algo. 3.1 for scan, Algo. 3.2
for nested scan, Algo. 3.4 for second-order difference equations,
Algo. 3.5 for Fibonacci sequence, Algo. 3.6 for banded linear
systems, Algo, 3.8 for tridiagonal linear systems have asymptotical
speed up linear to the number of cores p.
Proof: In all the above algorithms, the compression and expansion
phases take O(n/p) time, and the global phase takes O(p) time.
The total time is then T (f, n, p) = O(n/p) + O(p). Since p =
o(n), T (f, n, p) = O(n/p). By (4):

S(n) = T (f, n, 1)/T (f, n, p) = O(n)/O(n/p) = O(p) (5)

Also to be observed is:

THEOREM 5.6. The computational time of the global phase in a
CC algorithm is a function of the number of cores p, and indepen-
dent of the size n of the problem.

The above implies that if the sequential base constituent of a CC
algorithm is an optimal one sequentially, then the CC algorithm
is also an optimal multicore program in the sense that, (1) it is a
consistent algorithm, and (2) it has linear speedup.

In Figure 4, we plot the speed-up curve of some CC programs
in Haskell on an Intel Xeon machine runing Linux OS with seven
cores available to us. We omit the benchmark for nested scan
because it is being implemented in terms of a single flat scan.
All programs run entirely in memory, and we measure the speed
by calculating the wall time each program takes from start to
finish. Observe that the speedups for the three different problems
are all nearly perfectly linear to the number of cores used for the
computation.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7
p

Speedup vs number of cores p of CC algorithms

ccScan

♦
♦

♦
♦

♦
♦

♦
♦

ccDiff

+

+

+

+

+

+

+

+
ccTrid

¤
¤

¤
¤

¤
¤

¤

¤

Figure 4. Speedup curve of CC programs in Haskell for scan,
second-order difference equation, and tridiagonal problem for n =
106 on multicore system with seven cores.

Theorem 5.5 may appear to be a direct violation to Amdahl’s
Law [1] or Gustafson’s Law [8]. There is a simple explanation

3 f(x) = o(g(x)) if limx→inf f(x)/g(x) = 0

for this. Both laws assume some fixed percentage of either the
parallel or sequential portion of a program. Since this is not a
valid assumption for the problems we consider in this paper, neither
Amdahl’s nor Gustafson’s Law is relevant here.

6. Characteristics
In the above section, it is shown that, for a broad range of problems,
CC paradigm can deliver multicore solutions optimal in computa-
tion and communication with linear speed up. It is however unclear
what the common characteristics are of the problems that are sub-
ject to the CC programming paradigm.

To answer the above question, let us first introduce the notion
of the CC class.

DEFINITION 6.1. A problem is in the class CC if and only it is sub-
ject to the CC form of (Def. 2.1) with an unbounded compression
ratio (Section 2).

It follows that:

THEOREM 6.1. Scan, nested scan, second-order linear difference
equations, Fibonacci sequence, banded linear triangular system of
bandwidth two, tridiagonal linear systems are in the class CC.

To characterize problems in CC, we need the following notions:

DEFINITION 6.2. Let F be a function over input X . The reference
graph of F is the pair G = (V,R), where V = {x | x ∈ X}, and
R is the binary relation, where x1 R x2 if and only if x1 refers to
x2 in F .

For instance, the reference graph for the problem of second-order
difference equations is a chain of vertices, each of which, with
the exception of the first two, has two directed edges connecting
it to the two previous ones respectively. Since this binary relation
generally is not symmetric, the graph is directed.

Given a graph G = (V,R), a cut is a binary partition of the
vertices, and the size of a cut is the number of edges between the
two partitions. A cut is maximum if its size is larger than any other
cut.

Now we are in a position to identify a necessary condition for
problems to be in the class CC:

THEOREM 6.2. Let f be a problem in CC, then there exist a refer-
ence graph G = (V,R) for f with maximum cut independent of
|V |, where |V | denotes the cardinality of V .
Proof: suppose this is not the case, we can then use the reference
graph as defined by the CC algorithm for that of f . This graph
however has maximum cut bounded by a constant, leading to a
contradiction.

The problem of second-order difference equations, for instance, has
a reference graph that meets the above condition.

It should come as no surprise that all problems are not known
to possess reference graphs with constant bounded maximum cut
as required by Theorem 6.2. FFT and Bitonic Sort are examples of
such problems.

Next, we show that the class CC is characterized not only by the
property of the reference graphs, but also by the complexity classes:

THEOREM 6.3. Let L be the class of problems with computational
complexity of O(n) 4 , where n is the size of the problem. Then
CC ⊂ L.
Proof: suppose there is a problem f ∈ CC, and f /∈ L.

4 Here, the O(n) refers to the linear complexity of a problem on a Turing
machine.

Let T (f, n, 1) = O(g(n)), where g is not linear to n, fs the
base function of f . The time to compute fs on each core will be
g(n/p). If we simulate the CC program for p cores on one core,
the total time will be O(mg(n/m)). Since g is more than linear
with n, it follows that O(mg(n/m)) < O(g(n)), which leads to a
contradiction.

Theorem 6.2 and 6.3 point out rather severe limitations on the
power of the compress-and-conquer paradigm. However, there are
problems that, though not in themselves in the class CC, contain
component(s) which are. Matrix multiplication, for instance, is
clearly not in the class L, however, its main component, the inner
product of a row and a column from the two factor matrices, is in
the class CC and can indeed be computed with a CC program.

7. Variations and Generalizations
7.1 Parallelized Core-Phase
Observe that in the CC form of Def. 2.1 we have chosen to apply
the sequential base function over the compressed problem during
the global phase, and as a result, the global phase computation
is mapped into the internal computation inside a single appointed
core (P0, see Section 4). Alternatively, one could choose a parallel
program for the global phase. It can be shown, however, unless
the number of cores is sufficiently large, the alternative parallel
approach brings no benefit to performance, but only complicates
the programming requirement. For if one goes that way, he must
provide a separate parallel version of the base function in addition
to the sequential version which is shared in all the three phases
under the proposed scheme.

7.2 Specialized Sequential Function
An interesting aspect of CC is that the sequential function fs is
applied three times, one in each of the three phases:

1. In compression phase, fs only partially solves each segment of
the original input data;

2. The compressed results form a much smaller problem in the
global phase, which is completely solved by fs;

3. The solution to the compressed problem is expanded to modify
each segment of the original data, which then are completely
solved by fs.

For this reason, we’ll call fs the generalized solver for a given
problem. But in order to re-use the same fs, we have to retain
the original data until the last phase. A consequence made more
apparent by the monadic ccm is that in the compression phase
it has to make copies of the input segments otherwise fs would
modify them in place. This is of course an implementation issue
that can be addressed, for instance, by some fusion technique. A
more fundamental question is: can we re-use the result of fs from
the compression phase without having to keep the original data
around?

The answer is yes. Instead of relying on just one fs for all
phases, we can take another sequential function gs that we call a
specialized solver, and formulate a different CC algorithm below:

cc’ d c co xp comg comh fs gs = post . first core . pre
where pre = unzip . map ((co × id) . fs) . d

core = d . comh . fs . comg . c
post = c . map (gs . xp) . (uncurry zip)
first f (x, y) = (f x, y)
f × g x = (f x, g x)

Just like the original cc in Def. 2.1, cc’ still contains three phases,
but in the compression phase, it actually passes the results from

function fs directly to the expansion phase, and function gs would
pick up from where fs has left and work out a complete solution
with the expanded information obtained from the global phase.

In terms of complexity, cc′ is on the same order as cc. But
in an actual implementation, it may perform better because the
specialized solver gs may require less computation steps than the
generalized solver fs since it already has a partial solution to
start with. Theoretically, however, we still prefer the original CC
formulation in Def. 2.1 which is easier to reason about for its
simplicity.

7.3 Higher-Order CC
A compress-and-conquer with a sequential base function is said to
be of first order. Inductively, a compress-and-conquer is said to be
of a (k + 1)-th order CC algorithm if its base function fs is a k-th
order compress-and-conquer.

Let us consider a second-order compress-and-conquer, with ar-
ity n at top level, m the bottom level. It can be mapped to a multi-
core system with n interconnected nodes, each with m cores. It is
easy to show that

THEOREM 7.1.
(1) A second (k+ 1)-th order CC is operation and communica-

tion optimal if and only if its (k-th order) base function is.
(2) The speedup of a second-order compress-and-conquer with

arities n and m at top and base levels respectively mapped to n
nodes with m cores is respectively linear to n and m.

Observe that second-order CC form provides a simple and el-
egant framework to program hierarchical systems with multiple
nodes of multicore units with guaranteed optimal performance.

It should also be obvious the above theorem can be generalized
to CC algorithms with orders greater than two.

8. Relation to Divide-and-Conquer
Divide-and-conquer (DC) has been shown to be one of the most
effective paradigms for deriving elegant and efficient parallel solu-
tions to a wide variety of problems [6, 14, 15]. Both DC and CC
solves a problem by dividing it into sub-problems. However, the
arity of the division in DC is usually some small constant such as
two, while CC uses division with arity variable in the number of
processing units; DC is recursive, while CC is not; and a DC algo-
rithms usually is a different algorithm from the best-known sequen-
tial counterpart altogether, while a CC algorithm is always derived
from a sequential algorithm for the same problem.

It should also be pointed out that the two paradigms are not
equivalent in their computational power. Given Theorem 6.3, the
computational power of compress-and-conquer is strictly weaker
than that of divide-and-conquer.

Also note that the two paradigms do not necessarily lead to
the same performance. Scan, for example, although the problem
has O(n) operation complexity, a DC algorithm would require
O(nlog(n)) operations [15]. In contrast, as shown in Theorem 5.1,
a CC algorithm would be operation optimal.

Finally, we would like to point out that automatic transformation
between DC and CC programs is possible under certain conditions.
Our previous work on divide-and-conquer introduced the notion of
pre- and post- morphism as algebraic models for DC, and it was
pointed out that a broad range of scientific problems can be solved
with three types of communications, namely, last-k, correspondent,
and mirror-image [14, 15]. It can be shown that a postmorphism
[14, 15] algorithm with last-k communication can be automatically
transformed into a CC program, and vice versa, which limited by
space must be elaborated elsewhere.

9. Related Work
Much effort has been made to support high-level programming for
multicore computing. Some noticeable examples are the Thread-
ing Building Blocks from Intel [18], Parallel Task Library from
Microsoft, and the Data Parallel Haskell project [5] from the func-
tional programming community. The CC paradigm proposed here
differs from any of the above approaches in a number of ways.
Firstly, it does not expose any of the mechanisms related to multi-
core architecture such as thread, mutex, and task queues. Secondly,
its does not expose any imperative constructs such parallel-for or
parallel loops. Finally, instead of relying on programming con-
structs such as reduce and scan, it provides a more general form
from which the constructs can be derived.

Solving a problem through compression is not an entirely new
idea. There is a known technique in parallel computing, referred to
as odd-even reduction. Ladner and Fischer [12] used this technique
in an elegant parallel scan algorithm. With odd-even reduction, a
problem is recursively reduced in size by a factor of two. As a
result, the number of steps required is logarithmic to the size of
the problem during both the reduction and expansion phase. In
contrast, the CC paradigm has unbounded compression ratio, and
takes one step during both the compression and expansion. Another
obvious difference is that an algorithm based on odd-even reduction
is totally a different algorithm from its sequential counterpart, while
a CC algorithm employs the sequential counterpart as the core of
its computation.

Nested data parallelism has been shown to be an expressive and
effective approach to multicore programming [9, 17], which can be
traced back to work on the language NESL and nested scan [3, 4].
From a data structure point of view, both Data Parallel Haskell and
compress-and-conquer introduce new kinds of array operations.
The two approaches however have salient differences in nature.
First of all, the division of arrays in the former are non-polymorphic
in that the result depends on the values of the array entries through
the use of array comprehension (e.g. the division used in quick-
sort), while in the latter, polymorphic structural operations are of
fundamentally importance to the paradigm (non-polymorphic op-
erations can be implemented with polymorphic operations). Sec-
ondly, in spite of a large number of primitives built into the parallel
arrays of the former, data communication is completely hidden, and
programmers have to trust the compiler to do a good job of balanc-
ing tasks. In contrast, communication in the latter is a first-class cit-
izen. Thirdly, monadic composition (in its comprehension form) is
the main theme in the former, while higher-order functional forms
are the center pieces of the latter.

M. Cole et. al. with their work on programming skeletons have
shown how higher-order functions can be adapted to work with
non-declarative languages for the purpose of parallel programming
[2, 6]. Under their framework, as a higher-order form, compress-
and-conquer can be considered as another algorithmic skeleton, dif-
ferent but related to divide-and-conquer, which they have identified
as an important parallel algorithmic skeleton.

10. Conclusion
We have proposed CC as an efficient paradigm for multicore com-
putation, and showed how it can be implemented using Haskell
higher-order functions. The expressive power of the paradigm was
illustrated with its application to a number of problems includ-
ing scan, nested scan, difference equations, banded linear systems,
and linear tridiagonal systems. The optimality of CC programs was
proven and confirmed by the benchmarks of the CC programs on
multicore machine. Besides the linear speedup, the CC paradigm
reduces the complexity of multlicore programming by allowing a
sequential program to be used as the core component of the multi-

core program. While not all problems are subject to the paradgim,
the computational power is shown to subsume that of scan, nested
scan, and mapReduce.

Acknowledgement This research was supported in part by a grant
from Microsoft Research, and by NSF grant CCF-0811665.

References
[1] G. Amdahl. Validity of the single-processor approach to achieving

large-scale computing capabilities. Proceedings of AFIPS Conference,
pages 483–485, 1967.

[2] S. G. Anne Benoit, Murray Cole and J. Hillston. Why skeletal parallel
programming matters. In Proceedings of Euro-Par 2004, page 37,
2004.

[3] G. Blelloch. Scans as primitive parallel operations. In International
Conference on Parallel Processing, 1987.

[4] G. Blelloch. Programming parallel algorithms. Communication of the
ACM, 39(3), March 1996.

[5] M. M. Chakravarty, R. Leshchinsky, S. Peyton Jones, G. Keller, and
S. Marlow. Data parallel Haskell. In DAMP’07, November 2007.

[6] M. Cole. Algorithmic skeletons: Structured management of parallel
computation. 1989.

[7] W. Gropp and et al. Mpich2 user’s guide. Mathematics and Computer
Science Division, Argonne national lab, November 2004.

[8] J. Gustafson. Reevaluating Amdahl’s law. Communication of the
ACM, 21(5):532–533, 1988.

[9] T. Harris and S. Singh. Feedback directed implicit parallelism. In
International Conference on Functional Programming, Oct 2007.

[10] Intel. Intel 64 and IA-32 architectures software developer’s manual,
August 2007.

[11] J.Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. 2004.

[12] R. E. Ladner and M. J. Fischer. Parallel prefix computation. Journal
of the ACM, 27(4):831–838, 1980.

[13] D. Leijen and J. Hall. Optimize managed code for multi-core ma-
chines. MSDN Magazine, October 2007.

[14] Z. G. Mou. A Formal Model for Divide-and-Conquer and Its Parallel
Realization. PhD thesis, Yale University, May 1990.

[15] Z. G. Mou and P. Hudak. An algebraic model for divide-and-conquer
algorithms and its parallelism. The Journal of Supercomputing, 2(3):
257–278, November 1988.

[16] S. Peyton Jones, editor. Haskell 98 Language and Libraries – The
Revised Report. Cambridge University Press, Cambridge, England,
2003.

[17] S. Peyton Jones and et. al. Harnessing the multicores: Nested data
parallelism in Haskell. In Foundations of Software and Theoretical
Computer Science, Bangalore 2008.

[18] J. Reinders. Intel Threading Building Blocks. O’Reilly, 2007.

